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ABSTRACT

We study a completely affine term structure model with matrix-valued state variables, which grants a

new element of flexibility in the joint modeling of stochastic volatilities and correlations of factors, and

in the specification of the market prices of risk. The most parsimonious three-factor setup provides a

unified answer across a set of empirical regularities such as (i) the predictability of excess bond returns,

(ii) the persistence of conditional volatilities and correlations of yields, or (iii) the hump in the term

structure of forward rate volatilities and implied volatilities of caps. By a straightforward enlargement of

the state space, the model can also successfully accommodate more complex features of the bond market

such as the Cochrane-Piazzesi (2005) return-forecasting factor, or the unspanned dynamics of interest

rate derivatives.
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This paper studies a completely affine continuous-time yield curve model, in which matrix-valued

state variables generate stochastic correlations of risk factors. By providing additional flexibility in modeling

first and second moments of yields, this setting extends the standard affine class of term structure models.1

We document its success in reconciling a range of empirical patterns such as (i) the violations of the

expectations hypothesis (e.g., the Campbell and Shiller (1991) and the Cochrane and Piazzesi (2005) slope

coefficients), (ii) the persistence in the conditional volatility of yields, (iii) the hump-shaped forward rate

and cap implied volatility curves, (iv) the time-varying correlations among different segments of the term

structure, and (v) the appearance of unspanned factors in the interest rate derivatives market.

The complexity of modeling jointly the first and second moments of yields is well illustrated by the recent

bond market behavior itself. One commonly cited example comes from a comparison of two monetary

tightenings by the US Fed which occurred a decade apart, 1994/95 and 2004/05. In both periods, the

reaction at the long end of the curve provided for a surprise, yet for opposing reasons: The first interest

rate hike puzzled many observers because long term yields rose, the latter did so because they fell. This

wedge in comovements between short and long yields in the two periods has undermined the fit of some

otherwise successful models, and spurred considerable research in recent years. In search for an economic

explanation of these facts, various studies have argued about the differences in risk compensation and in

the amount of risk, manifest in shifting bond market volatility.2 Figure 1 summarizes this contrasting bond

market behavior. The consensus view suggests that while premia on long bonds were high and accompanied

by an increased yield volatility in the early episode, they turned low or even negative in the more recent and

calmer period. This brief account summarizes quite well a more general mechanism present in term structure

dynamics. It also reflects the key demand for a yield curve model to combine flexible specifications of bond

excess returns with a rich time-variation in volatilities and correlations of risk factors (and thus yields).

More generally, the empirical literature has highlighted a number of regularities that characterize the

dynamics of the US Treasury yields.3 First, yields are highly autocorrelated, and the extent of their

persistence may differ in subsamples. Second, excess returns on bonds are on average close to zero, but

vary systematically with the term structure. Accordingly, they can be predicted with several yield curve

variables such as the slope, the spot-forward spread, or linear combination of forward rates (Fama and

Bliss, 1987; Campbell and Shiller, 1991; Cochrane and Piazzesi, 2005). Third, in some periods the term

structure of unconditional volatilities peaks for maturities of 2–3 years, and is moderately downward sloping

for longer yields (Piazzesi, 2001). Finally, the term structure of conditional second moments of yields is

highly time-varying, and exhibits a multi-factor structure (e.g. Andersen and Benzoni, 2008).

A vast literature has explored the ability of term structure models to account for the time-series and cross-

sectional properties of bond market dynamics. The research has focused on analytically tractable models that

1By “standard affine” we denote the state space R
m
+ × R

n−m of a regular affine n-dimensional process (see Duffie, Filipovic,
and Schachermayer, 2003).

2See Campbell (1995), Backus and Wright (2007) and Cochrane and Piazzesi (2008) for an interesting account of these
tightening events. Rudebusch, Swanson, and Wu (2006) document the failure of two established macro-finance Gaussian
models in fitting the 2004/05 “conundrum” period. They ascribe a large portion of the conundrum to declines in long-term
bond volatility, and contrary to common argument, find little or no role for foreign official purchases of US Treasuries in
explaining the puzzle.

3For a thorough review of the empirical features of yields see e.g., Piazzesi (2003); Dai and Singleton (2003); Singleton (2006).
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ensure economically meaningful behavior of yields and bond returns. This combination of theoretical and

empirical requirements poses a significant challenge. In affine term structure models (ATSMs), for instance,

the tractability in pricing and estimation—their key advantage—comes at the price of restrictive assumptions

that guarantee admissibility of the underlying state processes and their econometric identification. Dai and

Singleton (2000) emphasize that under the risk-neutral measure admissibility implies a trade off between

factors’ dependence and their stochastic volatilities. In order to have both correlations and time-varying

volatilities, positive square-root processes need to be melded together with conditionally Gaussian ones. The

inclusion of Gaussian dynamics allows for an unconstrained sign of factor correlations, but instead sacrifices

some ability to accommodate stochastic yield volatilities.

In order to match the physical dynamics of the yield curve, reduced-form models have exploited rich

specifications of the market price of risk. The early “completely affine” literature assumed the market price

of risk to be a constant multiple of factor volatility.4 Summarizing the empirical failure of this specification,

Duffee (2002) proposed an “essentially affine” extension, in which the market prices of risk are inversely

proportional to factor volatility in the case of unrestricted (conditionally Gaussian) factors and have a

switching sign, but preserve the completely affine form for the square-root (volatility) factors. More recently,

Cheridito, Filipovic, and Kimmel (2007) suggested a new “extended affine” generalization making the market

price of risk of all factors—both Gaussian and square-root—inversely proportional to their volatilities.

The levers obtained by augmenting the market price of risk are twofold. First, by incorporating Gaussian

factors, the expected excess bond returns can switch sign. Second, correlations between some factors can

take both positive and negative values. This gain in flexibility appears crucial for matching the behavior of

yields over time. Duffee (2002) and Dai and Singleton (2002) stress the key role of correlated factors for the

model’s ability to forecast yield changes and excess bond returns. Yet, despite a good fit to some features of

the data, the essentially affine models face limitations evident in the trade-off between stochastic volatilities

and correlations of factors, and thus allow to match the first or the second conditional moments of yields,

but not both at a time.5 While the extended affine market price of risk helps mitigate some of these tensions,

recent research has exposed its restrictions in terms of matching higher order moments of yields (Feldhütter,

2007). However useful for fitting the data, the extensions of the market price of risk are not innocuous from

the perspective of both theory and applications. In an equilibrium setting, the market price of risk reflects

investor risk attitudes. More complex formulations are therefore equivalent to increasingly complex investor

preferences which can be difficult to justify by standard arguments.6 More importantly, gains in empirical

4Examples of completely affine models are Vasicek (1977), or Cox, Ingersoll, and Ross (1985b). The models have been
systematically characterized by Dai and Singleton (2000).

5See e.g., Brandt and Chapman (2002); Bansal and Zhou (2002); Dai and Singleton (2003).

6Some equilibrium motivation for the essentially affine form of the market price of risk can be found in the term structure
models with habit formation, like in Dai (2003), and Buraschi and Jiltsov (2006). The extended affine family of Cheridito,
Filipovic, and Kimmel (2007), instead, seems difficult to reconcile with the standard expected utility maximization, because
it entails that agents become more concerned about risk precisely when it goes away. While potentially inconsistent with
standard preferences, such behavior can arise quite naturally in an economy with ambiguity aversion as demonstrated
by Gagliardini, Porchia, and Trojani (2007). In their non-affine term structure model, the contribution of the ambiguity
premium to excess bond returns dominates the standard risk premia precisely when the aggregate risk in the economy is
low.
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performance implied by a richer market price of risk come about by adding new parameters to already large

models, many of which turn out difficult to identify from yield curve data alone.

This paper takes a different approach. Rather than focussing on market prices of risk in the first place,

we start with a single non-standard assumption about the state space. Specifically, we assume risk factors

in the economy to follow a continuous-time affine process of positive definite matrices whose transition

probability is Wishart. By construction, such factors allow correlations and volatilities both to be stochastic.

This approach builds on the work of Gourieroux and Sufana (2003) who propose the Wishart process as a

convenient theoretical framework to represent yield factors. We start from their insight and take the first

attempt to investigate the properties of a continuous-time Wishart yield curve model. By exploiting the

flexibility of the posited state space, we do not need to introduce a highly parametrized market price of risk,

and thus are able to resurrect the parsimonious completely affine class. Studying the properties of the term

structure, bond returns and standard interest rate derivatives, we document the ability of this setting to

match features of the data along several important dimensions.

First, our completely affine market price of risk specification involves elements that take both positive and

negative values. Hence, it translates into excess bond returns that can switch sign. We find that the variation

in the model-implied term premia is consistent in size and direction with the historical deviations from the

expectations hypothesis.

Second, the model does not face the volatility-correlation trade-off pertaining to ATSMs. Both under

the physical and risk-neutral measures, it accommodates switching sign of conditional and unconditional

correlations among state variables. We show that the model-generated yields bear the degree of mutual

co-movement and volatility persistence which is compatible with the historical evidence.

Third, the framework allows for a new aspect of flexibility also from the derivatives pricing perspective. We

find that it produces a hump-shaped term structure of forward interest rate and cap implied volatilities. The

direct presence of stochastic correlations in the state dynamics, both under the risk-neutral and physical

measure, does not require to impose them with an additional independent variable, as is typically done in

the literature. These features are key for the consistent pricing of caps relative to swaptions.

Finally, even though many regularities found in the data can be already reproduced with the most parsi-

monious three-factor specification, the Wishart setting affords a direct extension to a larger dimension at

no harm to analytical solutions. With the state space enlarged to six variables, the framework additionally

supports the single return-forecasting factor of Cochrane and Piazzesi (2005), is able to incorporate realistic

dynamic correlations of yield changes, and the comovement of yield volatilities. Parallel to providing a

comprehensive description of the spot yield curve, the enlarged model also allows for the appearance of

unspanned factors in interest rate derivatives. The flexibility gained with extra factors does not seriously

impair the parsimony. In terms of the number of parameters, the six-factor setting still looks more favorable

than the standard essentially or extended affine three-factor specifications.
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In our analysis, we exploit several results on the non-central Wishart distribution. Even though the statistical

properties of this distribution have been extensively covered in the early multivariate statistics literature as

summarized for instance by Muirhead (1982), the extension involving time dependence has only been explored

of late. The Wishart process was first proposed by Bru (1991), and more recently studied by Donati-Martin,

Doumerc, Matsumoto, and Yor (2004) and Gourieroux (2006) in continuous time and Gourieroux, Jasiak,

and Sufana (2004) in discrete time. This work has provided a foundation for such applications to finance as

derivatives pricing or portfolio choice with stochastically correlated assets (see e.g., Gourieroux and Sufana,

2004; Buraschi, Porchia, and Trojani, 2006; da Fonseca, Grasselli, and Tebaldi, 2006).

Apart from affine yield curve models, our work is related to the pricing and hedging of interest rate derivatives.

Two features of the interest rate derivatives data have spurred extensive research. First, the observed term

structure of implied cap volatilities is on average hump-shaped (e.g., De Jong, Driessen, and Pessler, 2004).

This requires a model that generates a hump in the volatility curve of forward interest rates (e.g., Brigo

and Mercurio, 2006). Second, prices of swaptions and caps are mutually inconsistent (e.g., Longstaff, Santa-

Clara, and Schwartz (2001)). The cap implied volatilities are typically higher and more volatile than those

extracted from swaptions (Collin-Dufresne and Goldstein, 2001). Simple affine models such as the three-

factor CIR fail to explain these features. Consequentially, Jagannathan, Kaplin, and Sun (2003) find the

CIR factors backed out from swap and LIBOR rates to be negatively correlated, which contradicts the model

itself. Taken together, these findings suggest that in order to successfully price interest rate derivatives, a

model needs to accommodate multi-factor stochastic structure of second moments, likely driven by factors

unrelated to bond prices themselves. In this vein, Collin-Dufresne and Goldstein (2001) and Han (2007),

among others, develop HJM-type of models that allow to bypass the trade-off between stochastic volatilities

and correlations in the affine class.

The plan of the paper is as follows. Section I introduces our completely affine market price of risk speci-

fication, derives the short interest rate, provides the solution for the term structure and discusses its asset

pricing implications. Section II presents the empirical approach, derives the moments of the Wishart process

and yields, and investigates the properties of factors based on the model fitted to the US Treasury zero curve.

In Section III, the most simple three-factor specification is scrutinized for its consistency with the stylized

facts of yield curve literature. Section IV extends the discussion to a six-factor framework and highlights

the payoffs from the enlarged model. Section V concludes. All proofs and figures are in Appendices.

I. The Economy

In analogy to the standard completely affine models, we motivate a parsimonious form of the market price

of risk within the general Cox, Ingersoll, and Ross (1985a) framework.

Assumption 1 (Preferences). The representative agent maximizes an infinite horizon utility function:

Et

[∫ ∞

t

e−ρ(s−t) ln(Cs)ds

]
, (1)
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where Et(·) is the conditional expectations operator, ρ is the time discounting factor, and Ct is consumption

at time t.

We depart from the affine literature only in the specification of risk factors driving the production technology

dynamics. These are assumed to follow an affine continuous-time process of symmetric positive definite

matrices.

Assumption 2 (Production technology). The return to the production technology evolves as:

dYt

Yt
= Tr (DΣt) dt + Tr

(√
ΣtdBt

)
, (2)

where dBt is a n × n matrix of independent standard Brownian motions; Σt is a n × n symmetric positive

definite matrix of state variables, and
√· denotes the square root in the matrix sense; D is a symmetric n×n

matrix of deterministic coefficients. Tr indicates the trace operator.

In the above diffusion, the drift µY = Tr(DΣt) and the quadratic variation σ2
Y = Tr(Σt) are of affine form.

Therefore, the univariate process of returns dYt

Yt
is affine in n(n+1)

2 distinct elements of the symmetric Σt

matrix.

Assumption 3 (Risk factors). The physical dynamics of the risk factors are governed by the Wishart process

Σt, given by the matrix diffusion system:

dΣt = (ΩΩ′ + MΣt + ΣtM
′) dt +

√
ΣtdBtQ + Q′dB′

t

√
Σt, (3)

where Ω, M, Q, Ω invertible, are square n × n matrices. Throughout, we assume that ΩΩ′ = kQ′Q with

integer degrees of freedom k > n − 1, ensuring the Σt matrix is of full rank.

The Wishart process is a multivariate extension of the well-known square-root (CIR) process. In a special case

when k is an integer, it can be interpreted as a sum of outer products of k independent copies of an Ornstein-

Uhlenbeck process, each with dimension n. A number of qualities make the process particularly suitable for

modeling multivariate sources of risk in finance (Gourieroux, Jasiak, and Sufana, 2004; Gourieroux, 2006).

First, the conditional Laplace of the Wishart and the integrated Wishart process are exponential affine in Σt.

As such, these processes are affine in the sense of Duffie, Filipovic, and Schachermayer (2003). This feature

gives rise to convenient closed-form solutions to prices of bonds or options, and simplifies the econometric

inference. Second, the Wishart process lives in the space of positive definite matrices. Thus, it is distinct

from the affine processes defined on Rm
+ ×Rn−m. The restriction ΩΩ′ ≫ Q′Q guarantees that Σt is positive

semi-definite. By additionally assuming that k > n − 1, it is ensured that the state matrix is of full rank.

Thus, the diagonal elements of Σt (and
√

Σt) are always positive, but the out-of-diagonal elements can

take on negative values. Moreover, if ΩΩ′ = kQ′Q for some k > n − 1 (not necessarily an integer), then

Σt follows the Wishart distribution (Muirhead, 1982, p. 443). Third, the elements of the Wishart matrix

feature rich dependence structure, and their conditional and unconditional correlations are unrestricted in

sign (see Section II and Result 1 in Appendix D for details). This feature implies a term structure setting

with weak restrictions on the stochastic cross-sectional dependence between yields. Finally, the coefficients
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of the dynamics (3) admit intuitive interpretation: The M matrix is responsible for the mean reversion of

factors, and the Q matrix—for their conditional dependence. Typically, in order to ensure non-explosive

features of the process, M is assumed negative definite.

I.A. The Short Interest Rate and the Market Price of Risk

Since we are primarily interested in exploring the term structure implications of the state dynamics (3), we

maintain the simple completely affine form of the market price of risk implied by our assumptions. Given

Assumption 1, the optimal consumption plan of the representative agent is C∗
t = ρYt, and the short interest

rate can be computed by the equation rt = −Et

[
du′(C∗

t )
u′(C∗

t )

]
, with u(C) = ln(C). The n × n matrix of market

prices of risk Λt follows as the unique solution of the equation µY −rt = Tr
[√

ΣtΛt

]
. A standard application

of Itô’s Lemma implies the following expressions for rt and Λt.

Proposition 1 (The short interest rate and the market price of risk). Under Assumptions 1–3, the short

interest rate is given by:

rt = Tr [(D − In)Σt] , (4)

where In is an n×n identity matrix. The market price of risk equals the square root of the matrix of Wishart

factors:

Λt =
√

Σt. (5)

The short interest rate in (4) can be equivalently written as:

rt =

n∑

i=1

n∑

j=1

dijΣij,t,

where dij denotes the ij-th element of matrix D−In. Thus, rt is a linear combination of the Wishart factors,

which are conditionally and unconditionally dependent, with correlations being unrestricted in sign.7 While

the short rate comprises both positive factors on the diagonal of Σt and out-of-diagonal factors that can

take both signs, its positivity is ensured with a straightforward restriction requiring the D − In matrix to

be positive definite (see Result 4 in Appendix D). In Section I.D below, we prove that the same condition

is necessary and sufficient to impose the positivity on the whole term structure of interest rates. The

instantaneous variance Vt of changes in the short rate is obtained by applying Ito’s Lemma to equation

(4), and computing the quadratic variation of the process dr, i.e. Vt = 〈dr〉t. Similarly, the instantaneous

covariance CVt between the changes in the short rate and their variance can be found as the quadratic

co-variation of dr and dV , i.e. CVt = 〈dr, dV 〉t. The instantaneous variance of the interest rate changes is

given by:
1

dt
Vt = 4Tr [Σt(D − In)Q′Q(D − In)] . (6)

The covariance between changes in the level and changes in the volatility of the interest rate becomes:

7By restricting D in equation (2) to be a diagonal 2 × 2 matrix, this expression for the short interest rate resembles the
two-factor model of Longstaff and Schwartz (1992). Even in this special case, however, the model has a richer structure, as
the variance of the changes in the interest rate is driven by all three factors (Σ11, Σ12,Σ22), which are pairwise correlated.

6



1

dt
CVt = 4Tr [Σt(D − In)Q′Q(D − In)Q′Q(D − In)] . (7)

Expressions (6) and (7) show that both quantities preserve the affine form in the elements of Σt. Appendix

A.1 provides the derivation.

The completely affine form of the market price of risk (5) fosters parsimony and tractability under the risk

neutral and the physical measure. In order to fit the data, the Wishart model exploits the flexibility of the

underlying risk factors, rather than a rich parametrization of Λt. Given the difficulties in estimating the

market price of risk parameters frequently reported in the affine literature, the plain specification adopted

here appears to be an asset for empirical applications.

A well-recognized critique of the completely affine models is their inability to match the empirical properties

of yields due to (i) the sign restriction on the market price of risk, and (ii) its one-to-one link with the

volatility of factors. Despite analogous derivation, the market price of risk in (5) is distinct from the

standard completely affine specification, as it reflects not only volatilities but also co-volatilities of factors,

and thus involves elements that can change sign. Positive factors on the diagonal of matrix Σ are endowed

with a positive market price of risk, while the market price of risk of the remaining out-of-diagonal factors

is unrestricted. Intuitively, the signs of the elements of Λt reflect different perceptions of volatility and

co-volatility risks by investors.

Remark 1 (Extended Wishart specification of the market price of risk). In a reduced-form Wishart factor

model, one could easily construct a richer market price of risk à la Cheridito, Filipovic, and Kimmel (2007):

Λt = Σt
−1/2Λ0 + Σt

1/2Λ1,

for some n × n constant matrices Λ0 and Λ1. This specification preserves the affine property of the process

(3) under the risk neutral measure, but modifies both the constant and the mean reversion terms in its drift.

In order to maintain the Wishart distribution under the risk neutral measure, one can set Λ0 = vQ′ for

v ∈ R+ such that k − 2v > n− 1.8 While the extended affine market price of risk adds significant flexibility

to the standard affine class, we show such an extension is not required to match the data, given the flexibility

of the Wishart process itself. �

I.B. The Term Structure of Interest Rates

Given expression (4) for the short rate, the price at time t of a zero-coupon bond maturing at time T is:

P (t, T ) = E∗

t

(
e−

∫
T

t
rsds

)
= E∗

t

(
e−Tr[(D−In)

∫
T

t
Σsds]

)
, (8)

where E∗
t (·) denotes the conditional expectation under the risk neutral measure. To move from physical

dynamics of the Wishart state in equation (3) to risk neutral dynamics, we can apply the standard change

8For practical applications, this form of Λt requires a careful analysis of conditions ensuring no arbitrage. In the classic affine
case, Cheridito, Filipovic, and Kimmel (2007) show that the extended affine market price of risk does not admit arbitrage
provided that under both measures the state variables cannot achieve their boundary values. In the Wishart factor setting,
this condition holds true if the Q matrix is invertible, and k − 2v > 1.
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of drift technique. Due to the completely affine market price of risk specification, the risk neutral drift

adjustment of dΣt takes on a very simple form: ΦΣ = ΣQ + Q′Σ.9

Remark 2. This form of the drift adjustment is straightforward to justify in a reduced form setting by

defining the Radon-Nikodym derivative for the transformation from the physical measure Q̃ to the risk

neutral measure Q∗:
dQ∗

dQ̃
|Ft

:= eTr[−
∫

t

0
Λ′

udBu−
1
2

∫
t

0
Λ′

uΛudu], (9)

where Λt =
√

Σt is our completely affine market price of risk. It follows from the Girsanov’s theorem that

the process B∗
t = Bt +

∫ t

0
Λudu is an n × n matrix of standard Brownian motions under Q∗. Therefore, the

SDE

dΣt = (ΩΩ′ + (M − Q′)Σt + Σt(M
′ − Q)) dt +

√
ΣtdB∗

t Q + Q′dB∗

t
′
√

Σt

represents the risk neutral dynamics of the Wishart process. �

Given the change of drift ΦΣ, the term structure pricing equation follows by applying the discounted

Feynman-Kač formula to expectation (8).

Proposition 2 (The pricing PDE). Under Assumptions 1–3, the price at time t of a contingent claim F

maturing at time T > t, whose value is independent of wealth, satisfies the partial differential equation:10

Tr{[ΩΩ′ + (M − Q′)Σ + Σ(M ′ − Q)]RF} + 2Tr [ΣR(Q′QRF )] +
∂F

∂t
− Tr [(D − In)Σ] F = 0, (10)

with the boundary condition:

F (Σ, T, T ) = Ψ(Σ, T ), (11)

where R is a matrix differential operators with ij−th component equal to ∂
∂Σij

.

In expression (8), we recognize the Laplace transform of the integrated Wishart process. By the affine

property of the process, the solution to the PDE in equation (10) is an exponentially affine function of risk

factors. The next proposition states this result in terms of prices of zero-coupon bonds.

Proposition 3 (Bond prices). If there exists a unique continuous solution to the Wishart equation, then

under the model dynamics (2)–(3), the price at time t of a zero-coupon bond P with maturity T > t, is of

the exponentially affine form:

P (Σ, t, T ) = eb(t,T )+Tr[A(t,T )Σ], (12)

for a state independent scalar b(t, T ), and a symmetric matrix A(t, T ) solving the system of matrix Riccati

equations:

− db(t, T )

dt
= Tr [ΩΩ′A(t, T )] (13)

−dA(t, T )

dt
= A(t, T )(M − Q′) + (M ′ − Q)A(t, T ) + 2A(t, T )Q′QA(t, T ) − (D − In), (14)

9As in the scalar case, the elements of ΦΣ can be interpreted as the expected excess returns on securities constructed so that
they perfectly reflect the risk embedded in the corresponding elements of the state matrix Σ.

10See Bru (1991) equation (5.12) for the infinitesimal generator of the Wishart process.
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with terminal conditions A(T, T ) = 0 and b(T, T ) = 0. Letting τ = T − t, the closed-form solution to (14) is

given by:

A(τ) = C22(τ)−1C21(τ),

where C12(τ) and C22(τ) are n × n blocks of the following matrix exponential:


 C11(τ) C12(τ)

C21(τ) C22(τ)


 := exp


τ


 M − Q′ −2Q′Q

−(D − In) −(M ′ − Q)




 .

Given the solution for A(τ), the coefficient b(τ) is obtained directly by integration:

b(τ) = Tr

(
ΩΩ′

∫ τ

0

A(s)

)
ds.

Proof: See Appendix A.2.1. �

Under the assumed factor dynamics, bond prices are given in closed form. The solution for A(τ) implied

by the matrix Riccati ODE (14) has been known at least since the work of Radon in 1929. The general

(non-symmetric) case has been discussed by Levin (1959). The matrix form of the coefficients facilitates the

characterization of the definiteness and monotonicity of the solution, given in the next corollary.

Corollary 1 (Definiteness and monotonicity of the solution). If matrix A(τ) is the solution to the matrix

Riccati equation (14), then A(τ) is negative definite and monotonically decreasing for all τ ∈ [0, T ], i.e.

A(τ) < 0 and A(τ2) < A(τ1) for τ2 > τ1, if and only if D − In is positive definite, D − In > 0.

Proof: See Appendix A.2.2. �

I.C. Yields.

From equation (12), we obtain the yield of a zero-bond maturing in τ = T − t periods:

yτ
t = −1

τ
[b(τ) + Tr (A(τ)Σt)] . (15)

The affine property of yields in the elements of Σt allows the relation (15) to be uniquely inverted for the

factors. In particular, the symmetric n × n state matrix can be identified from n(n+1)
2 yields (see Appendix

B.1 for details on the inversion). Moreover, to ensure positive yields, the A(τ) matrix needs to be negative

definite, for which it is both necessary and sufficient that D−In > 0. The coexistence of this simple positivity

condition together and unrestricted factor correlations is striking in the context of traditional ATSMs, in

which a positive short rate is at odds with unrestricted and correlated Gaussian factors. In the taxonomy of

Dai and Singleton (2000), AN (N) is the only subfamily of standard ATSMs that guarantees the positivity

of yields. In AN (N) models, all state variables determine the volatility structure of factors, and thus remain

conditionally uncorrelated. At the same time, the restrictions imposed on the mean reversion matrix require

the unconditional correlations among state variables to be non-negative.11

11Feldhütter (2007) shows that the negativity of yields in ATSMs can indeed become a concern. For instance, in the Gaussian
A0(3) model, which offers a maximal flexibility in modeling correlations of factors, the probability of negative 1-year (5-year)

9



Finally, the modeling of covariances between yields is a nontrivial issue in applications such as bond portfolio

selection. Therefore, it is important to understand their properties arising in the Wishart setting. The

instantaneous covariance of the changes in yields with different (but fixed) time to maturity (τ1, τ2) becomes:

1

dt
Covt [dyτ1

t , dyτ2

t ] =
4

τ1τ2
Tr [A(τ1)ΣtA(τ2)Q

′Q] . (16)

Our model implies that yields of different maturities co-vary in a non-deterministic and multivariate way,

evident in the presence of Σt in the above equation. Given the indefiniteness of matrix A(τ1)Q
′QA(τ2),

the correlations of yields can stochastically change sign over time. The secular decline in long yields during

2004/05 tightening period (see Figure 1) provides one example of an interest rate environment, in which

such feature can be important. While new empirical evidence emphasizes the presence of multiple factors in

second moments of yields (Andersen and Benzoni, 2008), this property cannot be captured by the univariate

volatility A1(N) specification preferred in several recent applications (e.g., Joslin, 2007; Thompson, 2008).

We investigate the consequences of the multifactor volatility structure in the Wishart setting in Section IV.B.

Remark 3 (Relationship to quadratic term structure models). As pointed out by Gourieroux and Sufana

(2003), in a special case the yield curve in equation (15) collapses to an n-factor quadratic term structure

model (QTSM) in the spirit of Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002). With one

degree of freedom (k = 1) in the factor dynamics (3), the state becomes a singular matrix of rank one,

Σt = X1
t X1′

t , where X1
t is an n-dimensional Ornstein-Uhlenbeck (OU) process (see Appendix B for details).

Using the fact that Tr
[
A(τ)X1

t X1′
t

]
= X1′

t A(τ)X1
t , a purely quadratic expression for yields emerges:

yτ
t = −1

τ

[
b(τ) + X1′

t A(τ)X1
t

]
.

Apart from the state degeneracy, we show that this special case places important limitations on the form

of yield correlations. Specifically when k = 1, correlations between the diagonal elements Σii,t, Σjj,t, i 6= j,

turn out to be piecewise constant and take plus/minus the same value (see Result 2 in Appendix D). To see

this, note that:

Corrt (Σii, Σjj) =
〈Σii, Σjj〉t√
〈Σii〉t

√
〈Σjj〉t

= sgn(X1
i,tX

1
j,t)

Qi′Qj

√
Qi′Qi

√
Qj′Qj

,

where X1
i,t, X

1
j,t are scalar OU processes given by the elements of vector X1

t , Qi, Qj denote the i-th and

j-th column of the Q matrix, respectively, and sgn is the sign function. By studying the more general non-

degenerate case we achieve two main goals.12 First, the out-of-diagonal elements of the state matrix become

non-trivial stand-alone factors with unrestricted sign. This feature permits us to conveniently capture the

predictability of bond returns. Second, since factor correlations are allowed to take any value between

−1 and 1, they provide additional flexibility in modeling the stochastic second moments of yields. The

relevance of this case extends beyond the basic zero yield curve modeling, into areas such as the pricing

yields amounts to non-negligible 5.98 (3.91) percent. The history of US nominal yields makes this probability look high in
comparison. Indeed, until the 2008 credit crisis negative nominal yields in the US remained very much a theoretical concept.

12In fact, when we estimate the model with k = 1 its overall fit deteriorates considerably compared to the non-degenerate case.
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of correlation-sensitive interest rate derivatives, or term structure models with stochastically correlated

observable macro-factors. �

I.D. Excess Bond Returns

The price dynamics of a zero-coupon bond follow from the application of Ito’s Lemma to P (Σt, τ):

dP (Σt, τ)

P (Σt, τ)
= (rt + eτ

t )dt + Tr
[(√

ΣtdBtQ + Q′dB′

t

√
Σt

)
A(τ)

]
, (17)

where eτ
t is the term premium (instantaneous expected excess return) to holding a τ -period bond (see

Appendix A.3). The functional form of the expected excess return can be inferred from the fundamental

pricing PDE (10), and is represented by a linear combination of the Wishart factors:

eτ
t = Tr [(A(τ)Q′ + QA(τ))Σ] = 2Tr [ΣtQA(τ)] . (18)

The instantaneous variance of bond returns can be written as:

vτ
t = 4Tr [A(τ)ΣtA(τ)Q′Q] . (19)

A stylized empirical observation is that excess returns on bonds are on average close to zero, but vary broadly

taking both positive and negative values.13 This means that the mean ratio
eτ

t√
vτ

t

is low for all maturities

τ . The essentially and extended affine models of Duffee (2002) and Cheridito, Filipovic, and Kimmel (2007)

are able to replicate this empirical regularity by assigning to non-volatility factors a market price of risk

that can change sign. Can our model fare equally well? The answer is “Yes”: We can generate excess

returns that have a switching sign if the symmetric matrix A(τ)Q′ + QA(τ) premultiplying Σ in equation

(18) is indefinite. The set of matrices (and model parameters) satisfying this condition is large, giving us

the latitude to capture the combination of low expected excess returns on bonds with their high volatilities.

Using estimation results, in Sections III.A and III.B we study the properties of model-implied excess bond

returns, and establish the model’s ability to fit their historical behavior.

I.E. Forward Interest Rate

Let f(t, T ) be the instantaneous forward interest rate at time t for a contract beginning at time T = t + τ .

The instantaneous forward rate is defined as f(t, T ) := −∂ ln P (t,T )
∂T . Taking the derivative of the log-bond

price in equation (12), we have:

f(t, T ) = −∂b(τ)

∂τ
− Tr

(
∂A(τ)

∂τ
Σt

)
,

where ∂A(τ)/∂τ denotes the derivative with respect to the elements of the matrix A(τ) given in equation

(14). The dynamics of the forward rate are given by (see Appendix A.4):

13See e.g. Figure 5 in Piazzesi (2003).
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df(t, T ) = −∂f(t, T )

∂τ
dt − Tr

(
∂A(τ)

∂τ
dΣt

)
. (20)

De Jong, Driessen, and Pessler (2004), for example, argue that a humped shape in the volatility term

structure of the instantaneous forward rate leads to possible large humps in the implied volatility curves of

caplets and caps that are typically observed in the market. We examine the magnitude and sources of the

hump in the model-implied volatility of the forward interest rate in Section III.D.

I.F. Interest Rate Derivatives

Our framework allows us to derive convenient expressions for the prices of simple interest rate derivatives.

The price of a call option with strike K and maturity S written on a zero bond maturing at T ≥ S is:

ZBC(t, Σt; S, T, K) = E∗

t

[
e−

∫
S

t
rudu(P (S, T ) − K)+

]

= P (t, T )PrT
t {P (S, T ) > K} − KP (t, S)PrS

t {P (S, T ) > K},

where PrT
t {X} denotes the conditional probability of the event X (exercise of the option) based on the

forward measure related to the T -maturity bond. We can take the logarithm to obtain:

PrT
t {P (S, T ) > K} = PrT

t {b(S, T ) + Tr (A(S, T )ΣS) > lnK}.

To solve for the option price, we need to determine the conditional distribution of the log bond price under

the S- and T -forward measures. In our framework, the characteristic function of the log bond price—due to

the affine property in Σ—is available in closed form. Thus, we can readily apply the techniques developed

in Heston (1993), Duffie, Pan, and Singleton (2000), and Chacko and Das (2002). The pricing of the option

amounts to performing two one-dimensional Fourier inversions under the two forward measures.

Proposition 4 (Zero-coupon bond call option price). Under Assumptions 1–3, the time-t price of an option

with strike K, expiring at time S, written on a zero-bond with maturity T ≥ S can be computed by Fourier

inversion according to:

ZBC(t, S, T, K) = P (t, T )

{
1

2
+

1

π

∫ ∞

0

Re
e−iz[log K−b(S,T )]ΨT

t (iz)

iz
dz

}

−KP (t, S)

{
1

2
+

1

π

∫ ∞

0

Re
e−iz[log K−b(S,T )]ΨS

t (iz)

iz
dz

}
,

where Ψj
t(iz), j = S, T , are characteristic functions of Tr [A(S, T )ΣS ] under the S- and T -forward measure,

respectively. Details and closed-form expressions for the characteristic function are provided in Appendix

A.5. �

The price of the corresponding put bond option can be obtained by the following put call parity relation:

ZBP(t, S, T, K) − ZBC(t, S, T, K) = KP (t, S) − P (t, T ).
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With these results at hand, we can price interest rate caps and floors, which are respectively portfolios of

put and call options on zero-bonds.

II. The Model-Implied Factor Dynamics

In this and the following sections, we are guided by the criteria laid down by Dai and Singleton (2003) and

study how the completely affine Wishart yield curve model corresponds to the historical behavior of the term

structure of interest rates. The model is scrutinized for its ability to match: (i) the predictability of yields,

(ii) the persistence of conditional volatilities of yields, (iii) the correlations between different segments of

the yield curve, and (iv) the behavior of interest rate derivatives.

Taken together, these criteria present a challenge for any yield curve model. Essentially affine models that

perform well on one front, by construction fail on another. The top performing models in forecasting—the

conditionally Gaussian A0(3) subfamily—fail completely in generating the time variation in the volatility of

yields, while the models that capture the stochastic volatility of yields—the A1(3) and A2(3) subfamily—

disappoint in terms of prediction (Dai and Singleton, 2002). The success of ATSMs either in forecasting or in

fitting the volatility crucially depends on the essentially affine specification of the market price of risk. With

the completely affine formulation, instead, the superiority of either subfamily is less clear (e.g., Singleton,

2006). The recent generalization of Cheridito, Filipovic, and Kimmel (2007) is a potential step towards

reconciling the forecasting of yields with their time-varying volatility. The extended affine market price of

risk improves the time-series fit especially in models with multiple restricted state variables, i.e. A2(3) and

A3(3) subfamilies. However, in comparison to essentially affine models, this improvement is achieved by

adding new parameters, and is typically accompanied by a deterioration in the cross-sectional fit to the yield

curve (Feldhütter, 2007).

To study the ability of the Wishart model to match the criteria (i)–(iv), we begin with the most simple 2×2

specification (k = 3) of the state matrix (3) and the completely affine market price of risk (5). Effectively,

we place ourselves in a three-factor setting, with two positive factors Σ11, Σ22, and one factor Σ12 that can

change sign. Section III shows that this simple model suffices to match the first and second conditional

moments of yields, and to replicate the hump term structure of cap implied volatilities. In order to study

more complex features of the bond market such as the Cochrane-Piazzesi factor or unspanned factors in

derivatives, we subsequently extend the dimension of the state matrix to 3 × 3 (k = 3). The results are

discussed in Section IV.

We put the model to the test in two ways: First, we require it to simultaneously match both conditional

and unconditional properties of yields. This allows us to assess the richness of the structure implicit in

the Wishart framework. Second, due to the choice of a low dimensional state matrix and a parsimonious

market price of risk, after imposing the identification restrictions, the estimated 2 × 2 model is equipped

with only 9 parameters to perform tasks (i)–(iv) mentioned above. This low number is hard to match by

models in the affine class, in which the completely affine CIR with three independent factors already requires

12 parameters. The tight parametrization of the Wishart setting becomes even more salient in the context

of essentially affine and extended affine models. For instance, the essentially affine Gaussian A0(3) model
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studied in Duffee (2002) involves the estimation of 21 parameters in the preferred—i.e., restricted—version,

and 28 parameters in the unrestricted version. The respective numbers for the essentially affine A1(3) model

are 22 (preferred) and 29 (unrestricted). The extended affine specification requires 24 parameters in the

restricted A1(3) model. With 18 identified parameters, even the completely affine 3 × 3 Wishart six-factor

model compares favorably with the three-factor essentially and extended affine counterparts.

Before proving the model’s ability to explain the yield curve puzzles, we outline our econometric approach

based on closed-form moments of yields, discuss the model identification, and review the features of the

underlying state space implied by the estimated parameters. Proofs are delegated to Appendix C.

II.A. Econometric approach

We use end-of-month data on zero-coupon US Treasury bonds for the period from January 1952 through

June 2005. The sample includes the following maturities: 3 and 6 months, 1, 2, 3, 5, 7 and 10 years. Yields

for the period from January 1952 through December 1969 are from McCulloch and Kwon data set; yields

from January 1970 through December 1999 are from the Fama and Bliss CRSP tapes. For the last period

from January 2000 through June 2005, we use yields compiled by Gurkaynak, Sack, and Wright (2006).14

II.A.1. Moments of yields

The estimation of the parameter vector θ comprising the elements of matrices M, Q and D can be posed as

the method of moments by setting:

θ̂T = argmin
θ

‖µ̂T − µ(θ)‖,

where µ̂T represents a vector-valued function of empirical moments based on the historical yields with

different maturities, and µ(θ) is its theoretical counterpart obtained from the model. The function µ

involves the first and second (cross)-moments of yields with different maturities. We estimate the parameter

vector θ by using moment conditions that provide both stationary and dynamic information about the

term structure. The moments that provide a stationary description of the term structure comprise means,

standard deviations and correlations of yields. The conditional information is introduced by augmenting

the set of moment conditions with Campbell-Shiller regression coefficients. More specifically, in the 2 × 2

case we use the unconditional moments of yields with maturities 6 months, 2 years, and 10 years, and the

Campbell-Shiller regression coefficients for the 2- and 10-year yields. In estimating the 3 × 3 specification,

we further expand this set with correlations of yield changes and forward rate volatilities, and by adding the

5-year yield. This leaves us with 11 and 20 moment restrictions for the 2 × 2 and 3 × 3 model, respectively.

Affine expressions for the term structure facilitate the computation of the theoretical moments of yields as a

function of the moments of the Wishart state variable. For brevity, we only provide the unconditional mean

and covariance:

14The sample is an extension of the one used in Duffee (2002). The three sources use different filtering procedures, thus yields
they report for the overlapping period do not match exactly. However, the descriptive statistics for yields of Gurkaynak,
Sack, and Wright (2006) are consistent with the Fama-Bliss data set for the overlapping part of both samples.
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E(yτ
t ) = −1

τ
{bτ + Tr [AτE (Σt)]}

Cov(yτ1

t+s, y
τ2

t ) =
1

τ1τ2
vec (Φ′

sAτ1
Φs) [Cov(vecΣt)] vec(Aτ2

),

where Cov(vecΣt) = E [vecΣt(vecΣt)
′] − vecEΣt (vecEΣt)

′ .

In that the moments of the Wishart process, stated in the next lemma, are particularly simple and available

in fully closed form, the computation of the moments of the term structure becomes a straightforward task.

Lemma 2 (Conditional moments of the Wishart process). Given the Wishart process (3) of dimension n with

k degrees of freedom, the first and the second conditional moments of Σt+τ |Σt are of the form, respectively:

E(Σt+τ |Σt) = ΦτΣtΦ
′

τ + kVτ , (21)

and

E[vecΣt+τ (vecΣt+τ )
′ |Σt] = vec(ΦτΣtΦ

′

τ + kVτ ) [vec(ΦτΣtΦ
′

τ + kVτ )]
′

+ (In2 + Kn,n) [ΦτΣtΦ
′

τ ⊗ Vτ + k(Vτ ⊗ Vτ ) + Vτ ⊗ ΦτΣtΦ
′

τ ] , (22)

where In2 is the n2 × n2 identity matrix, Kn,n denotes the n2 × n2 commutation matrix, ⊗ is the Kronecker

product, and vec denotes vectorization. Matrices Φτ and Vτ are given as:

Φτ = eMτ

Vτ =

∫ τ

0

ΦsQ
′QΦ′

sds. (23)

Proof and the closed-form expression for the integral (23) are detailed in Appendix C. �

The stationarity of the state variables requires the M matrix to be negative definite, in which case the

unconditional moments of Σt are readily available:15

E (Σt) = kV∞

E
[
vecΣt (vecΣt)

′
]

= k2vecV∞ (vecV∞)
′
+ k(In2 + Kn,n) (V∞ ⊗ V∞) ,

where V∞ can be efficiently computed as:

vecV∞ = vec

(
lim

τ→∞

∫ τ

0

Φ(s)Q′QΦ′(s)ds

)
= − [(In ⊗ M) + (M ⊗ In)]−1 vec(Q′Q)

by exploiting the link between the matrix integral and the Lyapunov equation MX + XM ′ = Q′Q (see

Appendix C.1.3).

15Clearly, the negative definiteness of M matrix ensures that limτ→∞ Φ(τ) = 0.
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II.A.2. Model identification

The unobservability of the state spells out the possibility that two distinct models lead to distributionally

equivalent yields. Therefore, the identification of the parameters becomes a concern for empirical appli-

cations. A simple way to characterize the identification restrictions in our setting is to exploit its link to

QTSMs. In the general case of an integer k > 1, the Wishart factor model shows analogy to an (n · k)-

factor “super-quadratic” model without a linear term and with repeated parameters. To see this, stack k

n-dimensional OU processes X and the corresponding Brownian motions W as Zt = (X1′
t , X2′

t , . . . Xk′
t )′ and

Wt = (W 1′
t , W 2′

t , . . .W k′
t )′. Then, the factors, the short rate and the market price of risk can be recast in a

vector form as:

dZt = (Ik ⊗ M)Ztdt + (Ik ⊗ Q′)dWt

rt = Z ′

t [Ik ⊗ (D − In)] Zt

Λt = Zt,

where ⊗ denotes the Kronecker product. This model implies a risk neutral dynamics for the state variables

of the form dZt = [Ik ⊗ (M − Q′)] Ztdt + (Ik ⊗ Q′)dWt. For instance, the 3 × 3 Wishart model with k = 3

degrees of freedom has a super-quadratic nine-factor interpretation.

With this equivalence, the parameter identification is ensured under conditions similar to those of Ahn,

Dittmar, and Gallant (2002) or Leippold and Wu (2002). Since our completely affine market price of risk

does not contain additional parameters, we can identify Ik ⊗ (M − Q′), Ik ⊗ M and Ik ⊗ Q′ from the

Gaussian distribution of the state variables, both under physical and risk neutral probabilities. To pin down

the parameters with respect to invertible linear transformations, it is enough to require matrices Ik⊗(M−Q′)

and Ik ⊗ M to be lower triangular. This condition is equivalent to imposing that matrices M and Q′ are

both lower triangular.

In addition to identification restrictions, the model implies two mild conditions on the parameter matrices:

(i) negative definiteness of matrix M , which guarantees the stationarity of factors, and (ii) the invertibility

of matrix Q, which ensures that Σt is reflected towards the domain of positive definite matrices when the

boundary of the state space is reached. We can additionally require the D − In matrix to be positive

definite, thus ensuring positive yields. Appendix E provides details on the estimation procedure along with

the estimated parameter values.

II.B. Properties of Risk Factors

The Wishart process gives much freedom in modeling the conditional dependence between positive factors,

while allowing for their stochastic volatility. Thus, contrary to the classical affine models, we need not

trade off one feature for another. The current section substantiates this claim using the parameters of the

estimated 2 × 2 model.
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Factor correlations. To demonstrate how the time variation in correlations comes up in our setting, we

consider an example of the instantaneous covariance between the positive elements of a 2 × 2 matrix of

factors:

Corrt(Σ11, Σ22) =
〈Σ11, Σ22〉t√
〈Σ11〉t

√
〈Σ22〉t

. (24)

Instantaneous variances and covariance of the elements Σ11 and Σ22 are straightforward to compute (see

Result 1 in Appendix D):

d〈Σ11〉t = 4Σ11(Q
2
11 + Q2

21)dt,

d〈Σ22〉t = 4Σ22(Q
2
12 + Q2

22)dt,

d〈Σ11, Σ22〉t = 4Σ12(Q11Q12 + Q21Q22)dt, (25)

where Qij is the ij-th element of matrix Q.

The conditional second moments are linear in the elements of the factor matrix. The covariance between

positive factors is determined by the out-of-diagonal element Σ12, which is either positive or negative. As a

result, the instantaneous correlation of Σ11 and Σ22 is time-varying, unrestricted in sign, and depends on the

elements of Σ in a non-linear way.16 The negative model-implied conditional correlation of positive factors

is a peculiarity in the context of ATSMs, in which positive (volatility) factors can be at best unconditionally

positively correlated. In fitting the observed yields, however, the possibility of negative correlations plays

a crucial role. For instance, Dai and Singleton (2000) report that in a CIR setting with two independent

factors, studied earlier in Duffie and Singleton (1997), the correlation between the state variables backed out

from yields is approximately −0.5, instead of zero. Their estimation results for the completely affine A1(3)

subfamily give further support to the importance of negative conditional correlations among (conditionally

Gaussian) factors.17

The degrees of freedom parameter k. The properties of the conditional factor correlations in our model are

controlled by the degrees of freedom parameter k. Recall that k integer fixes the number of OU processes

used to construct the state dynamics in equation (3) (see also Remark 3 and Appendix B for a related

discussion). As such, it drives the non-singularity of Σt. By going beyond unitary degrees of freedom, but

keeping them integer, we reach several goals all at once. First, we introduce a non-trivial time-variation

in conditional correlations of positive factors, and thus break the link between our model and the n-factor

QTSMs. Second, since the diagonal factors are non-central χ2(k) distributed, k influences different moments

of yields. To illustrate this, we plot the instantaneous correlations of diagonal factors (Figure 2) as well as

the distribution of the 5-year yield implied by the estimated 2 × 2 model for different k’s (Figure 3). In the

special case where k = 1, the conditional correlations of positive factors are piecewise constant. Moreover,

the restrictive χ2(1) factor distribution translates into a by far too high skewness of yields, as compared

16When the elements of the Wishart matrix admit an interpretation as a variance-covariance matrix of multiple assets, Buraschi,
Porchia, and Trojani (2006) show that the correlation diffusion process of ρ = Σ12/

√
Σ11Σ22 is non-linear, with the

instantaneous drift and the conditional variance being quadratic and cubic in ρ, respectively. The non-linearity of the
correlation process arises despite the affine structure of the covariance process itself.

17See Dai and Singleton (2000), Table II and III.
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to the historical distribution. A higher k tends to mitigate the misfit to the higher moments of yields by

making the distribution closer (but, clearly, not isomorphic) to the Gaussian. To compare the model’s

performance with the affine class, Figure 4 superposes the 5-year US yield against the densities implied by

our 2 × 2 model (panel a) and three benchmark ATSMs estimated by Duffee (2002) (panel b). The mixed

A1(3), A2(3) ATSMs face severe problems in matching the higher order moments of yields, and the purely

Gaussian A0(3) implies a non-negligible probability of negative yields. At the same time, the Wishart model

(k = 3, 7) is free from both shortcomings.18 Intuitively, the multiple roles played by the degrees of freedom

parameter explain why the flexibility of the model does not come at a loss to its parsimony.

[Insert Figure 2, 3 and 4 here]

Factor volatilities. The rich dependence of factors in our model does not handicap their stochastic volatilities.

It is clear from the dynamics of the Wishart process in equation (3) that all three state variables feature

stochastic volatility. This is also manifested in the highly significant GARCH coefficient computed for the

simulated sample of factors.19 Ahn, Dittmar, and Gallant (2002) note that the goodness-of-fit of the standard

ATSMs may be weakened precisely in settings, in which state variables have pronounced conditional volatility

and are simultaneously strongly negatively correlated. We are able to accommodate such situations. The

ease at which correlations and stochastic volatilities coexist in the Wishart model is one of its powerful

characteristics, as we prove in Section III.C and IV.B.

Am(N)-type interpretation of factors. It is informative to look at our setting from the perspective of the

Am(N) taxonomy developed by Dai and Singleton (2000). This, however, requires an additional qualifier.

For instance, the 2×2 Wishart framework nests under one name distinctive and so far also mutually exclusive

features of previous models: (i) the number of unrestricted versus positive factors of the essentially affine

A2(3) specification; (ii) the number of stochastic volatility factors of the completely affine A3(3) specification;

(iii) the unrestricted (positive and negative) correlations among factors of the A0(3) specification; and it

does not have a counterpart within the Am(3) family in terms of stochastic correlations among factors. We

find the out-of-diagonal element of the Wishart matrix, Σ12, to be negative in more than 90 percent of the

simulated sample.20 This result conforms with the affine literature, which provides evidence for the superior

performance of the Am<N (N) class, with some factors having unrestricted signs, over the multifactor CIR

models.

II.C. Factors Manifest in Yields

In order to verify the properties of the state dynamics in our model, we study what yields can tell us about

the factors.

18Feldhütter (2007) provides extensive evidence of the different abilities of essentially affine, extended affine, and semi-affine
models to match the higher-order moments of yields. The general conclusion from his work about the poor performance of
the essentially affine family is confirmed in our Figure 4.

19For the sake of brevity, we do not report the coefficients here, but just remark that for all state variables the GARCH(1,1)
coefficient is above 0.85.

20The simulated sample comprises 72000 monthly observations from the model. Whenever subsequently we refer to simulation
results, we always use this sample length, unless otherwise stated.
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Factors in disguise of principal components. As a basic check whether the historical yields could have been

generated by the assumed factor dynamics, we apply the standard principal component analysis to the data

and to the yields simulated with the model. It is well-documented that three principal components explain

over 99 percent of the total variation in yields (Litterman and Scheinkman, 1991; Piazzesi, 2003). Since we

use a 2×2 specification of the state matrix, the model-generated yields are spanned by at most three factors.

We find that the portions of yield variation explained by the first two principal components in the model

largely coincide with the empirical evidence. Moreover, the traditional factor labels are evident in Figure

5 with weights on the first three principal components virtually overlapping with those computed from the

data.

[Insert Figure 5 here]

Shifting number of factors. Although the three-factor structure of US yields seems robust across different data

frequencies and types of interest rates, recent research points to a time variation in the number of common

factors underlying the bond market. Pérignon and Villa (2006) reject the hypothesis that the covariance

matrix of US yields is constant over time, and document that both factor weights and the percentage of

variance explained by each factor change concurrently with changes in monetary policy under various FED

chairmen.

The behavior of instantaneous correlations between the Wishart factors in Figure 2 leads us to investigate

whether the model can help explain this seemingly changing risk structure. We sort yields according to

the level of instantaneous correlations between state variables, and for each group we compute the principal

components. An immediate fact stands out from this exercise: the percentage of yield variation explained

by the consecutive principal components changes considerably and in a systematic way across different

subsamples. For instance, the loadings on the first and second principal components can vary from over 99

to 95 percent and from 5 to almost zero percent, respectively, depending on the level of instantaneous

correlations. Such variability is consistent with the decompositions of the US yield levels in different

subsamples. In Figure 6 we plot, as a function of instantaneous factor correlation, the portions of yield

variation explained by each principal component.

[Insert Figure 6 here]

The closed-form expression for the conditional covariance of yields (16) allows us to perform a dynamic prin-

cipal component analysis (Figure 7). This decomposition has an intriguing gist, as it leads to a much higher

variation in factors explaining yields than what could be expected from the previous decomposition based on

crudely defined subsamples. This discrepancy indicates that an empirical finding of some changeability in

the yield factor structure across subsamples may significantly understate the true conditional variability. It

stands to reason that, depending on the state of the economy, the relative impact of different macroeconomic

variables (e.g., inflation expectations, real activity) onto the yield curve can vary considerably over time.

This intuition finds support in the historical behavior of US yields, which seemed to be dominated by the

variation of inflation expectations in the 1970s, and by the variation of real rates in the 1990s. Motivated
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by this evidence, Kim (2007) highlights the relevance of structural instabilities and changing conditional

correlations of macro quantities for explaining the term structure variation in the last 40 years.

[Insert Figure 7 here]

III. Yield Curve Puzzles Revisited

We assess the model in terms of the goodness-of-fit criteria discussed in the introduction to Section II. The

analysis based on the 2 × 2 specification and a single set of estimated parameters (given in Appendix E.1)

indicates that already this simple framework is able to provide a consistent answer across several dimensions

of the spot and derivative bond markets. This coherence turns out to be a powerful tool to differentiate

between our model and several preferred ATSMs which we choose as a benchmark.

III.A. Excess Returns on Bonds

The key implication of the essentially affine market price of risk proposed by Duffee (2002) is that excess

bond returns have unrestricted sign. This feature is crucial for matching their empirical properties. Due to

the properties of the Wishart process, our model “by default” grants a degree of flexibility that is (at least)

comparable with the essentially affine class. To substantiate this claim, Figures 8 and 9 present excess bond

returns obtained from the 2× 2 Wishart term structure model (WTSM). The plots confirm the consistency

of the model with the empirical evidence in several respects. First, we observe a switching sign of the

risk premia, both instantaneous (Figure 8) and those computed from discrete realizations of the bond price

process (Figure 9). Second, excess returns are highly volatile, with the conditional ratio eτ
t /
√

vτ
t having

a large probability mass between ±1. Third, the above properties hold true across bonds with different

maturities.

[Insert Figure 8 and 9 here]

The model-implied returns match the magnitudes and the distributional properties of the US bond return

dynamics. Empirically, the expected excess returns on long bonds are on average higher and more volatile

than on short bonds (see Table I in Duffee (2002)). In line with this evidence, the model produces expected

excess returns and volatilities that rise as a function of maturity. Moreover, the ratio of mean excess returns

to their volatility is well below one (0.17 on average) across all maturities. These features play an important

role in the model’s ability to replicate the failure of the expectations hypothesis, which we discuss next.

III.B. The Failure of the Expectations Hypothesis

The expectations hypothesis states that yields are a constant plus expected values of the current and average

future short rates. Thus, bond returns are unpredictable. This can be tested in a linear projection of the

change in yields onto the (weighted) slope of the yield curve, known as the Campbell and Shiller (1991)

regression:
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yn−m
t+m − yn

t = β0 + β1
m

n − m
(yn

t − ym
t ) + εt, (26)

where yn
t is the yield at time t of a bond maturing in n periods, and n, m are given in months. While

the expectations hypothesis implies the β1 coefficient of unity21 for all maturities n, a number of empirical

studies point to its rejection. Moreover, there is a clear pattern to the way the expectations hypothesis is

violated: In the data β1 is found to be negative and increasing in absolute value with maturity. This means

that an increase in the slope of the term structure is associated with a decrease in the long term yields.

Rephrased in terms of returns, the expected excess returns on bonds are high when the slope of the yield

curve is steeper than usually.

The findings of Section III.A confirm the ability of the model to produce the time variation in expected

returns. To study whether expected returns vary in the “right” way with the term structure, we compute

the model-implied theoretical coefficients of Campbell-Shiller regressions,22 and benchmark them against

their empirical counterparts (see panels a in Table I and in Figure 10). For the sake of comparison, we

perform an analogous exercise for three preferred affine specifications of Duffee (2002) at his parameter

estimates (see panels b in Table I and in Figure 10). In Duffee’s convention, preferred models drop the

parameters that contribute little to the models’ QML values. This gives rise to two essentially affine models

A0(3) and A1(3) and one completely affine model A2(3).

The results indicate that our model can accommodate the predictability of the yield changes by the term

structure slope. While the two Campbell-Shiller coefficients used as moment conditions are matched almost

perfectly (see the shading in Table I, panel a), the model turns out to do a good job also in fitting other

parameters, not used in the estimation. Panel a of Figure 10 visualizes this match by showing that all model-

implied coefficients lie within the 80 percent confidence bounds computed from the historical sample.23 At the

same time, the results for the ATSMs concur with the previous literature. The essentially affine Gaussian

model A0(3) conforms with the empirical evidence, whereas both A1(3)—notwithstanding its essentially

affine market price of risk—and A2(3) models have counterfactual predictability implications.

[Insert Figure 10 here]

21To see this, note that m-month return on n-maturity bond is rn
t,t+m = lnP n−m

t+m /P n
t = −(n − m)yn−m

t+m + nyn
t . Then, the

monthly excess return over the risk free return ym
t is:

rxn
t,t+m =

1

m
rn
t,t+m − ym

t = − m

n − m

(
yn−m

t+m − yn
t

)
+ (yn

t − ym
t ) .

Reformulating and taking expectation yields:

Et

(
yn−m

t+m − yn
t

)
= − m

n − m
Et

(
rxn

t+m

)
+

m

n − m
(yn

t − ym
t ) .

Under the expectations hypothesis, the first term on the RHS is a constant, and the slope coefficient in a regression based
on the above equation is unity.

22In computing the theoretical coefficients, we follow Dai and Singleton (2002) who claim that matching the population
coefficients to the historical estimates is a much more demanding task than matching the coefficients implied by yields fitted
to an ATSM.

23 Note that the 80 percent bound—however lax for the data—is a more rigid gauge for the model’s performance than a wider
(e.g. 90 percent) bound. In fact, the coefficients obtained from A1(3) and A2(3) still fall outside the 95 percent bound.
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Table I: Regressions of the yield changes onto the slope of the term structure

The table presents the parameters of the Campbell-Shiller regression in equation (26). The maturities n are quoted in months.

The value of m is taken to be six months, for all n. Panel a, the first row presents historical coefficients based on US yields in

the period 1952:01–2005:06. The third row shows the model-implied theoretical coefficients along with population t-statistics

below. The shading indicates the coefficients used as moment conditions in estimation. The fifth row shows small sample

results obtained from the model by Monte Carlo. Panel b shows analogous results for the preferred affine specifications of

Duffee (2002) at his parameter estimates. The historical coefficients for the period 1952:01–1994:12 concur with the sample

used in estimation. All model-implied t-statistics are computed using Newey-West adjustment of the covariance matrix. Due

to unobservability of yields with a half-year spacing of maturity, we follow Campbell and Shiller (1991) (their Table I, p. 502),

and approximate yn−m
t+m by yn

t+m. This approximation is used consistently for all model-implied and historical data.

a. Wishart 2 × 2 factor model

Maturity (n months) 12 24 36 60 84 120

Data β1 (1952–2005) −0.174 −0.615 −0.852 −1.250 −1.660 −2.244

t-stat −0.4 −1.1 −1.4 −1.8 −2.1 −2.4

Model β1 (popul.) −0.070 −0.614 −1.070 −1.713 −2.120 −2.244

t-stat −6.4 −9.2 −10.8 −12.2 −12.5 −11.5

Model β1 (648 obs.)∗ 0.008 −0.521 −0.960 −1.568 −1.922 −2.065
t-stat 0.03 −1.5 −2.2 −2.4 −2.3 −1.9

b. ATSMs

Maturity (n months) 12 24 36 60 84 120

Data β1 (1952–1994) −0.392 −0.696 −0.890 −1.291 −1.738 −2.451

t-stat −0.8 −1.2 −1.4 −1.7 −2.0 −2.3

A0(3) (essentially)∗ −0.037 −0.401 −0.597 −0.986 −1.462 −2.248

t-stat −0.8 −7.0 −9.0 −12.3 −15.4 −18.8

A1(3) (essentially) 0.522 0.445 0.545 0.653 0.620 0.472

t-stat 7.1 4.6 4.8 4.6 3.5 2.0

A2(3) (completely) 1.354 1.416 1.454 1.369 1.226 1.007

t-stat 18.6 14.2 12.6 10.3 8.3 5.6

∗) The coefficients and t-statistics are the median of 1000 estimates based on the simulated sample of 648 observations. The

simulated path reflects the length of the sample used to estimate the WTSM. To conserve space, for ATSMs we only provide

the population results.

As an additional test, we have also considered two additional regressions, which are detached from the

estimation procedure, but reflect the same reasons for the failure of the expectations hypothesis as the

Campbell-Shiller regressions. First, following Duffee (2002) we study projections of the monthly excess

constant maturity bond returns on the lagged slope of the term structure defined as the difference between

the 5-year and the 3-month yield. Even though this regression merely restates the information conveyed

by Campbell-Shiller coefficients, it provides a robustness check of the previous results, because the yields

which construct the slope are not used directly in estimating the model. As a second check, we replicate the

regressions of Fama and Bliss (1987) projecting the excess one-year holding period bond return on the spot-

forward spread. For brevity, we only state the main results without reporting the details. The predictability

is confirmed. Consistent with the empirical evidence, the model-implied coefficients in both regressions

increase with the maturity of the bond used as the dependent variable. A steep slope of the term structure
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forecasts high excess returns during the next month. Similarly, a positive spot-forward spread is a predictor

of higher holding period returns.

The above discussion provides further insight into the relevance of the Wishart factor structure in our

completely affine setting. Within the essentially affine Am(3) family, these are the Gaussian models that

dominate other subfamilies in terms of prediction because they allow for correlated factors as well as the

changing sign of the market price of risk (Dai and Singleton, 2002). This fact appears to convey the intuition

behind the success of our model, which by construction is equipped with both correlated factors and a

flexible market price of risk. Moreover, and in contrast to affine Gaussian models, to achieve an acceptable

forecasting performance in our setting it is not necessary to sacrifice the stochastic volatilities. This aspect

is addressed next.

III.C. Second Moments of Yields

Two issues that occupy the term structure research agenda are (i) the time variation and persistence of the

conditional second moments of yields, (ii) the humped term structure of unconditional yield volatilities.

Conditional volatility of yields. In our model, stochastic volatilities of factors are an immediate consequence of

the definition of the Wishart process. We now explore how they translate into the conditional second moments

of yields. Is the degree of time variation and persistence in yield volatility commensurate with historical

evidence? To answer this question, we follow Dai and Singleton (2003), and estimate a GARCH(1,1) model

for the 5-year yield (see Table II). The choice of the 5-year yield is motivated by the fact that this maturity

is not involved in estimation of the 2× 2 model. Therefore, its conditional and unconditional properties can

be traced back to the intrinsic structure of the model. In panel a of Table II, we report the coefficients for

our model and compare them with the historical estimates. To be able to infer the relative significance of the

two sets of parameters, we compute the median GARCH estimate based on 1000 simulated samples with 54

years of monthly observations each. We take the same approach to assess the volatility implications of the

preferred A1(3) and A2(3) models of Duffee (2002) (see Table II, panel b). Due to its constant conditional

volatility assumption, the Gaussian A0(3) model is not taken into consideration.

The results confirm that the degree of volatility persistence implied by the Wishart factor model aligns well

with the historical figures. For example, the median model-implied GARCH coefficient is 0.847 as compared

with 0.820, which is found empirically. Furthermore, our model is able to reproduce the positive link between

yield levels and their conditional volatilities: We find the correlation between the level of the 5-year yield

and its GARCH(1,1) conditional volatility to be 0.72 in the simulated sample. In combination with the

discussion of Section III.B, these results lend support to our claim that the model can simultaneously solve

the predictability and the volatility puzzle.

The volatility persistence in the benchmark affine models, instead, shows a larger discrepancy to the data,

and is typically too low. As in Dai and Singleton (2003), we document that the essentially affine A1(3)

specification exhibits conditional volatility that is roughly in line with the historical evidence. And yet, as

shown is Section III.B, it also largely fails in explaining the conditional first moments of yields. Although
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Table II: GARCH(1,1) parameters for the model-implied and historical 5-year yield

The table presents the estimates of a GARCH(1,1) model: σ2
t = σ̄ + αε2

t−1 + βσ2
t−1, where εt is the innovation from the

AR(1) representation of the level of the 5-year yield. Panel a shows the ML estimates for the Wishart factor model, and

compares them to the historical coefficients based on the sample period 1952:01–2005:06. Panel b displays estimates for the

preferred affine models of Duffee (2002): the essentially affine A1(3) and the completely affine A2(3) and compares them to the

historical coefficients. Accordingly, the simulation of the ATSMs uses the estimates from Duffee (2002) for the sample period

1952:01–1994:12. The population values are based on 72000 observations.

a. Wishart 2 × 2 factor model

α β σ̄

Data (1952–2005) 0.180 0.820 0.000
t-stat 7.6 39.0 3.3

Model (popul.) 0.116 0.870 0.000
Model (648 obs.)∗ 0.123 0.847 [0.71, 0.96] 0.000

t-stat 4.4 27.6 2.4

b. ATSMs

α β σ̄

Data (1952–1994) 0.243 0.757 0.003
t-stat 6.8 23.3 3.7

A1(3) (popul.) 0.257 0.670 0.000
A1(3) (516 obs.)∗ 0.153 0.707 [0.50, 0.86] 0.000

t-stat 3.0 8.5 2.7

A2(3) (popul.) 0.409 0.590 0.000
A2(3) (516 obs.)∗ 0.370 0.547 [0.33, 0.84] 0.000

t-stat 5.2 9.7 4.4

∗) The coefficients and t-statistics are the median of 1000 estimates based on the simulated sample of 648 and 516 months,

respectively. The simulated path reflects the length of the sample used to estimate the different models. The numbers in square

brackets show the small sample 99 percent confidence intervals based on Monte Carlo.

the A2(3) specification allows for two CIR-type factors, the volatility persistence it implies is even lower

than in the A1(3) case. Note, however, that the preferred A2(3) model of Duffee (2002) is equivalent to

the completely affine formulation, because the parameters of the essentially affine market price of risk turn

out to be insignificant in estimation. This outcome reinforces the claim of Dai and Singleton (2003) that

the essentially affine market price of risk is the key to modeling the persistence in the conditional second

moments of yields in ATSMs. Finally, the small sample confidence intervals for the GARCH estimates convey

useful intuition about the proximity of the different models and the true process driving the volatility of

yields. Out of the three models considered, the GARCH coefficient in the Wishart factor setting is not only

on average closest to the historical number, but it is also the least dispersed one.

Humped term structure of unconditional volatilities. The term structure of unconditional volatilities of

yields (and yield changes) is another recurring aspect in the yield curve debate. Its shape, which varies across

different subsamples, has aroused increased interest with the appearance of a hump at around 2-year maturity

during the Greenspan era (Piazzesi, 2001). Dai and Singleton (2000) conclude that the key to modeling the

hump in ATSMs lies either in correlations between the state variables or in the respective factor loadings in

the yield equation. Consistent with this interpretation, our model allows for non-monotonic behavior of yield
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volatilities. To uncover the mechanism that leads to this non-monotonicity, we decompose the unconditional

variance of yields into contributions of factor variances and covariances scaled by the respective loadings (not

reported). The decomposition reveals that the hump in the volatility curve is predominantly driven by the

(weighted) variance of the Σ12 factor. This result fits nicely within the interpretation of Dai and Singleton

(2000) in that Σ12 also determines the correlation between the positive factors. The forward yield volatilities

and cap implied volatilities are discussed in greater detail next.

III.D. Aspects in Derivative Pricing

There is an intimate link between factor correlations, forward rate volatilities, and the prices of interest rate

derivatives.

The term structure of forward rate volatilities. Similar to the unconditional second moments of yields, the

term structure of forward rate volatilities tends to be hump-shaped for shorter maturities, as reported in Amin

and Morton (1994) and Moraleda and Vorst (1997), among others. In WTSM, the instantaneous forward

rate is given in closed form in expression (20). Thus, we can readily obtain the whole term structure of

instantaneous forward rate volatilities. Consistent with the empirical evidence, at the estimated parameters

a pronounced hump becomes evident. The decomposition of the model-implied forward rate variance reveals

that the non-monotonicity is due to two elements: the variances of Σ12 and Σ11, scaled by the respective

functions of the elements of matrix A(τ).24 Thus, yields and forward rates share the same source of a hump

in volatility curves. Figure 11 (panel a) plots the instantaneous volatility curves for several dates in the

simulated WTSM. In that in reality the hump emerges for discretely spaced (in contrast to instantaneous)

forward rates, we also compute the theoretical standard deviations of one-year forward rates, and plot them

against maturities in Figure 11 (panel b). To put the results into perspective with ATSMs, the hump is

absent from the affine specifications at the parameters estimated by Duffee (2002). In the A0(3) model, the

forward volatility curve is monotonically decreasing. The mixed models A1(3) and A2(3), instead, imply its

increase for longer maturities—an implication which is not valid empirically.

[Insert Figure 11 here]

Implied volatilities of interest rate caps. The empirical properties of the conditional second moments of

yields can be inferred from the implied volatility quotes for the interest rate derivatives, such as caps. Also

in this case, the evidence of a hump is ubiquitous (e.g., Leippold and Wu (2003); De Jong, Driessen, and

Pessler (2004)). In a yield curve model, the hump of cap volatilities can be induced via forward rates. The

“transmission” mechanism follows from the fact that the volatility of a caplet is the integrated instantaneous

volatility of the forward rate (see e.g., Brigo and Mercurio, 2006). Thus, those models able to display a hump

in the instantaneous forward rate volatility should also perform well in the pricing of interest rate caps.

To verify this statement, we use the model-implied prices and the corresponding Black (1976) volatilities for

caps with maturities from one to 15 years. A cap struck at rate C starting at T0 and making equidistant

24The decomposition refers to the variance of the forward rate f(t; S, T ) prevailing at time t for the expiry at time S > t, and

maturity T > S, defined as f(t; S, T ) = 1
T−S

ln
P (t,S)
P (t,T )

= 1
T−S

{b(t, S) − b(t, T ) + Tr [(A(t, S) − A(t, T ))Σt]}.
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payments at times Ti, i = 1, . . . , n, based on the simply compounded floating rate L(Ti−1, Ti), can be priced

according to:

Capt =

n∑

i=2

E∗

t

[
e−

∫ Ti
t rsdsδ

(
L(Ti−1, Ti) − C

)+]

= (1 + δC)

n∑

i=2

E
Ti−1

t

[(
1

1 + δC
− P (Ti−1, Ti)

)+
]

, (27)

where Ti − Ti−1 = δ. To get the last expression note that δL(Ti−1, Ti) = 1
P (Ti−1,Ti)

− 1. The last payment

date Tn determines the maturity of the cap. E
Ti−1

t specifies the conditional expectation under the forward

measure induced by the zero bond maturing in Ti−1 − t periods. Thus, using Proposition 4, we can value

caps as portfolios of put options on zero bonds. By market convention, we focus on at-the-money (ATM)

contracts, for which the strike rate C of the Tn-maturity cap is set equal to the current Tn-year swap rate:

C =
1

δ

P (0, T1) − P (0, Tn)∑n
i=2 P (0, Ti)

. (28)

The mapping from cap prices to Black volatilities assumes an identical volatility for each caplet constituting

the contract. Figure 12 presents the results as a function of the contract’s maturity for several dates in

the simulation. Indeed, our 2 × 2 factor specification is able to adapt an empirically plausible behavior of

implied volatilities, which are lower for short maturity caps (one-year), increase in the intermediate range

and decline smoothly for longer maturities.

[Insert Figure 12 here]

The implied cap volatilities carry new information about the conditional features of the model. By using an

empirically relevant specification of the cap contract, we fend off concerns that a hump is just an instantaneous

feature of the model. Moreover, and in contrast to the preceding discussion, the investigation of derivatives

helps us assess the risk-adjusted properties of the state dynamics. The appearance of a hump in volatilities of

forward rates and caps reflects the flexibility of the model under both physical and risk-adjusted measures.

The research into the pricing of caps and swaptions points to a link between correlations of different

yields/forward rates and the humped term structure of their volatilities (Collin-Dufresne and Goldstein, 2001;

Han, 2007). Rich interrelations of factors also lie at the origins of the conditional hump in the quadratic

term structure models (Leippold and Wu, 2003). A similar link can be retrieved in the Wishart setting

from the role played by the out-of-diagonal factors. In the 2 × 2 example, Σ12 determines the stochastic

dependence among different elements of the state matrix, and contributes to the non-monotonicity of the

volatility curves. Therefore, the shape of volatility curves is a manifestation of the underlying stochastic

correlations of factors, that are equally present under the physical and risk-adjusted measures. This puts the

model aside from the standard affine class, in which factor correlations—while possibly restricted under the

risk-adjusted measure—are passed to the model through the market price of risk. Even though this permits

a better fit to the time series of yields, the constrains on the risk-neutral dynamics still impede the pricing in
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the cross section, as suggested by the inconsistent valuations of caps and swaptions in the multifactor affine

settings (see e.g. Jagannathan, Kaplin, and Sun (2003)).

IV. Extensions

By construction, any three-factor model comes under strain at least in three important respects. First,

with the low dimension of the state space, the correlation of factors plays multiple (possibly conflicting)

roles, steering simultaneously the time-series dynamics of the yield curve (e.g. predictability) along with its

cross-sectional characteristics (e.g. humped term structure of yield volatilities). We note, for instance, that

the inclusion of Campbell-Shiller coefficients in the set of moment conditions tends to somewhat worsen the

model’s fit to the unconditional volatility curve. Second, the number of risk factors restricts the number of

non-collinear variables (e.g. forward rates or yields) that can be used in a forecasting regression of excess

returns. Finally, with three factors necessary to explain the spot interest rates, there is no room for the

so-called unspanned factors manifested in the prices of interest rate derivatives. An obvious cure to these

tensions lies in the enlargement of the state space to a higher dimension. In this section, we estimate the

3 × 3 model along the lines of Section II.A (see Appendix E.2 for parameters). This extension takes us to a

six-factor setting with three positive and three unrestricted factors and 18 parameters. It is worth pointing

out that six-factor models with stochastic volatility are very difficult to come by in the standard affine setup

due to the large number of parameters they involve. We show that the completely affine six-factor WTSM is

able to accommodate further characteristics of fixed income markets in addition to those already captured

in the 2 × 2 case.

IV.A. Cochrane-Piazzesi Single Forecasting Factor

Cochrane and Piazzesi (2005) strengthen the case against the expectations hypothesis by showing that excess

returns across bonds of different maturities can be predicted with a single factor—a linear combination of five

forward rates. Notably, the coefficients of a projection of one-year holding period bond returns on a constant

and five one-year forward rates exhibit a systematic (tent-like) pattern. The implications of different models

for the Cochrane-Piazzesi-type predictability have been studied by Bansal, Tauchen, and Zhou (2003) and

Dai, Singleton, and Yang (2004). These works have focussed on the restricted case with at most three factors.

However, to replicate the evidence in full (in an affine framework), at least five factors are required to avoid

collinearity. We work with six. In our model, log bond prices are linear in the Wishart factors; hence the

predictability due to a single linear combination of forward rates is equivalent to the predictability due to a

single linear combination of the elements of Σ. We scrutinize the 3× 3 model for the presence and the form

of the single return-forecasting factor.

Single return-forecasting factor. While the single common factor appears to be an established feature of the

data, its specific shape could be an artifact of a smoothing method used in constructing the zero-curve. Dai,

Singleton, and Yang (2004) document that the pattern can turn into wave-like if, instead of the unsmoothed

Fama-Bliss (UFB) yields used by Cochrane and Piazzesi (2005), the smoothed Fama-Bliss (SFB) data set is
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employed.25 Some caveats are in order: First, yields generated from the model naturally lead to a“smooth”

zero curve. Second, in our model-generated term structure, as in reality, four factors (at a maximum)

are sufficient to explain 100 percent of the variance of yields. Thus, in the absence of any cross-sectional

measurement error, the collinearity of regressors becomes a concern; the oscillating shape of the forecasting

factor found by Dai, Singleton, and Yang (2004) in the smoothed data is a likely signal thereof.26 Figure

13 plots the slope coefficients in regressions of individual one-year excess bond returns on the set of five

one-year forward rates. The pattern of factor loadings in the model (Figure 13, panel a) resembles closely

the one found in the SFB data (Figure 13, panel b).

[Insert Figure 13 here]

Judging by the regularity of the slope coefficients, the key intuition for the single factor seems to be supported

by the model. Moreover, by including only three forward rates (f0→1
t , f2→3

t , f4→5
t ) in the regression, the

upward pointed triangular shape of the loadings (a “restricted tent”) becomes apparent (not reported). The

pertinent question, however, is whether our 3 × 3 model can recover the high degree of predictability due

to the single forecasting factor, rather than whether it can recover the particular shape. In Table III, we

report the univariate second stage regressions of excess returns on the linear combination of forward rates,

in Cochrane-Piazzesi notation:

1

4

5∑

τ=2

rx
(τ)
t+1 = γ′ft + ε̄t+1 (1st stage) (29)

rx
(τ)
t+1 = b(τ) (γ′ft) + ε

(τ)
t+1 (2nd stage) (30)

where rx
(τ)
t+1 = hprτ→τ−1

t+1 − y1Y
t is the return on holding the τ -maturity bond in excess of one-year yield,

and ft =
[
1, f0→1

t (spot), . . . , f4→5
t

]
is the vector of forward rates. With γ coefficients in equation (30) fixed

at the values from the first stage regression, γ′ft represents the return-forecasting factor.

Note that the moments used to estimate the model do not provide direct information about the above

regressions. Nevertheless, the model can replicate the empirical evidence. We study its population as well

as small sample implications and juxtapose them with the UFB and SFB data sets. The main conclusion of

Cochrane and Piazzesi (2005)—that a single factor accounts for a large portion of time-variation in excess

returns—is confirmed by the high R2 values in Table III. The model tends to generate R2’s that are very

much in line with the empirical figures in panel a. In support of the single factor hypothesis, the b(τ)

25Both data sets are constructed from the same underlying coupon bond prices. The method used to extract the UFB yields
assumes the forward rate to be a piecewise linear (step) function of maturity, whereas the SFB data is computed by smoothing
the UFB rates with a Nelson-Siegel exponential spline. See Dai, Singleton, and Yang (2004) and Singleton (2006) for a
discussion.

26Bansal, Tauchen, and Zhou (2003) suggest that in the presence of three latent factors driving the historical yields, the use of
five regressors creates near perfect co-linearity problem, up to cross-sectional measurement errors that mask the singularity.
As a standard remedy to collinear regressors, we add a very small amount of i.i.d. noise to model-generated variables.
This has virtually no impact on the first four moments of the interest rates distribution. The noise is generated from
N(0, 4.5 × 10−6); a different distribution, e.g. t3-student, does not change the results. Especially, the level of the R2

statistics remains largely unchanged. This finding is in line with the argument of Cochrane and Piazzesi (2005) that the
predictability is not driven by measurement errors. We note that running the regression without noise gives qualitatively
identical results, but leads to unreasonably high coefficients, which is again a diagnostic of the collinearity problem.
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Table III: Cochrane-Piazzesi single forecasting factor regressions

The table reports the coefficients b(τ), R2, and t-statistics for the restricted Cochrane-Piazzesi regressions in equation (30).

τ in the first row refers to the maturity of the bond whose excess return is forecasted. Panel a displays the results for two

data sets: smoothed Fama-Bliss (SFB) and unsmoothed Fama-Bliss (UFB) yields. The yields are monthly and span the period

1970:01–2000:12. Panel b presents the model-implied estimates in the population (72000 observations), and in a small sample

of length 360 months. All reported t-statistics use the Newey-West adjustment of the covariance matrix with 15 lags.

τ 2 3 4 5 2 3 4 5

a. Data (1970-2000)

SFB data UFB data

b(τ) 0.46 0.85 1.19 1.50 0.46 0.87 1.22 1.45

t-stat 5.63 5.44 5.18 4.95 7.99 7.60 7.54 7.05
R2 0.30 0.31 0.31 0.32 0.36 0.37 0.39 0.36

b. Wishart 3 × 3 factor model

Population Small sample∗ (360 obs.)

b(τ) 0.46 0.86 1.20 1.48 0.46 0.86 1.20 1.48

t-stat 59.48 60.99 58.63 55.42 6.46 6.52 6.32 6.05
R2 0.31 0.33 0.31 0.29 0.41 0.43 0.41 0.40

∗) The coefficients and t-statistics are the median of 1000 estimates, each based on the sample of 360 realizations from the
model.

coefficients are all significant and increase smoothly with bond’s maturity τ . Such behavior persists across

all data sets, irrespective of the underlying pattern of the γ’s in the first stage regressions.

Information content of γ′ft. A salient empirical property of the return-forecasting factor is that it carries

information beyond what is captured in the level, slope (typically considered to be the return predicting

variable) and curvature. The evidence in Cochrane and Piazzesi (2005) suggests that γ′ft is related to the

fourth principal component of yields, which in turn has only a weak impact on the yields themselves. In our

setting, this outcome has two different shades. Despite the great stability of the model-implied finite sample

estimates in Table III, the relationship between γ′ft and the yield factors turns out highly susceptible to

the small sample biases. The Monte Carlo analysis (based on 360 observations from the model) indicates

that the portions of γ′ft variance explained by the respective principal components are highly uncertain

quantities: They can range from 4 to 43 percent for the slope factor, and from 2 to 28 percent for the fourth

factor (as measured by the upper and lower decile). This changes as the length of the sample becomes large.

Then, the slope accounts for as little as 12 percent of the γ′ft variance, while the total contribution of the

fourth and fifth factor approaches 40 percent.

The historical behavior of term premia highlights the necessity of going beyond low dimensional models to

provide a comprehensive description of the bond market dynamics. The completely affine WTSM appears

as a convenient model to withstand this challenge.
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Table IV: Properties of the conditional hedge ratio

The table reports the statistics for the conditional hedge ratio HRt, the ratio of conditional volatilities of yield changes

σ10(t)/σ2(t), and the conditional correlation of yield changes ρ2,10(t). The conditional volatilities are estimated with a

GARCH(1,1) model, the conditional correlations—with the DCC model of Engle (2002). We report the means and volatilities

of the estimated conditional quantities. For the model, we provide the population statistics along with their small sample 99

percent confidence intervals (in brackets underneath) based on Monte Carlo with 1000 repetitions of 54 years of monthly data

each.

a. Data (1952–2005)

HRt σ10(t)/σ2(t) ρ2,10(t)

Mean 0.61 0.76 0.80
Volatility 0.16 0.17 0.06

Corr(σ2(t), σ10(t)) 0.86

b. Wishart 3 × 3 factor model

HRt σ10(t)/σ2(t) ρ2,10(t)

Mean 0.51 0.61 0.83
conf. bound [0.41, 0.64] [0.50, 0.74] [0.80, 0.87]

Volatility 0.13 0.14 0.03
conf. bound [0.05, 0.15] [0.06, 0.17] [0.01, 0.06]

Corr(σ2(t), σ10(t)) 0.76

conf. bound [0.40, 0.91]

IV.B. Conditional Hedge Ratio

The evidence in the literature suggests that low dimensional affine models have a hard time capturing the

right dynamics of volatilities and correlations of different segments of the yield curve (Bansal, Tauchen, and

Zhou, 2003; Dai and Singleton, 2003). It comes as no surprise that the 2× 2 model—while providing a good

explanation for several features of the data—cannot fully nail down the cross-sectional dynamics of yields.

Six factors appear to be the remedy.

To add insight on the (co-)volatilities of yields in the 3 × 3 setting, we focus on the conditional hedge

ratio between the 10- and 2-year bonds, i.e. HR(t) = σ10(t)
σ2(t) ρ2,10(t). σ2(t) and σ10(t) are the conditional

volatilities of yield changes obtained with a univariate GARCH(1,1); ρ2,10(t) is the conditional correlation

of the yield changes estimated with the dynamic conditional correlation (DCC) model of Engle (2002). To

match the characteristics of HRt, the model needs to accommodate not only the time-varying correlations

but also the variation in the relative riskiness of the two bonds, i.e. the comovement of volatilities. In this

context, Gaussian ATSMs, for example, turn out completely untenable. Our model, in contrast, replicates

the general properties of HRt relatively well (see Table IV). The model-implied volatility of both the

conditional correlation process ρ2,10(t) and of the volatility ratio σ10(t)/σ2(t) is close to the empirical one.

Overall, the implications for the conditional hedge ratio seem realistic as measured by the small sample

confidence intervals. We reach a similar conclusion for the correlation of volatilities of the two bonds.

The conditional behavior of second moments of yields has attracted considerable attention in the latest

term structure literature (e.g., Collin-Dufresne, Goldstein, and Jones, 2006; Joslin, 2007). This research
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tends to agree in that low dimensional affine models face severe difficulties capturing the conditional yield

volatility across maturities. Not surprisingly, those models in which more factors have stochastic volatility

seem to perform better. Based on the examination of Am(3) models, Jacobs and Karoui (2006), for instance,

tentatively suggest the A3(4) or A4(4) class as the best potential candidate for modeling volatility. At the

same time, they recognize that its heavy parametrization may frustrate the estimation effort. The completely

affine Wishart setting seems to provide a convenient way to combine a low number of parameters with a

maximal flexibility in the stochastic (co-)volatilities of factors.

IV.C. Unspanned Factors

With six state variables at hand, but only three factors needed to explain the variation of yields, our model

naturally lends itself to exploring the presence of factors unspanned by the spot market.

In the empirical literature, the discovery of unspanned factors follows from the poor performance of bond

portfolios in hedging interest rate derivatives. Recent research reports a considerable variation in cap and

swaption prices that appears to be weakly related to the underlying bonds. For instance, Heidari and Wu

(2003) document that three common factors in Libor and swap rates can explain little over 50 percent

in swaption implied volatility. Li and Zhao (2006) arrive at a similar conclusion for at-the-money (ATM)

difference caps. Even though the yield factors can explain around 90 percent of the variation in the short

maturity cap returns, their explanatory power deteriorates dramatically at longer maturities approaching

just 30 percent for the 10-year maturity.

Two observations lead us to expect a similar phenomenon to arise in our estimated model. First, while the

Σt matrix includes six autonomous factors,27 the principal component decomposition of the model-generated

yields reveals that three factors already explain nearly their total variation. Second, the estimated loading

matrix A(τ) in the yield equation (15) is almost reduced rank across all maturities (see Table V, panel a),

which indicates the possibility that the dimension of the state space generated by the yields is strictly smaller

than the dimension of the state space generated by the Wishart factors.

In the absence of a theory for unspanning in the Wishart setting, we take an empirical backing out approach

to test the presence of unspanned volatility features in our estimated model. We obtain the model prices of

ATM caps for maturities from one to 10 years, and perform three different checks. First, we regress caps

against three factors (level, slope and curvature) that span the spot yield curve in the model. Interestingly,

even without imposing any structural restrictions, we do find evidence of bond market incompleteness, with

an average R2 of just 53 percent (see Table V, panel b). By using just three factors we prune some information,

which—while inconsequential for spot yields—could possibly contribute to the variation of caps. To check

this possibility, we subsequently include the remaining principal components in the regressions. Although

the R2 increases, the general conclusion persists, and is roughly consistent with the findings of Li and

Zhao (2006) for ATM difference caps or Heidari and Wu (2003) for swaptions. Second, we decompose the

covariance matrix of residuals from the first set of regressions (panel c). The decomposition exposes at least

27This can be seen from Σt being full rank. Equivalently, a principal component exercise performed on the unconditional
covariance matrix of the state variables (i.e. covariance between the elements of Σt) also detects six factors.
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Table V: Factors in the derivatives market

The table reports the level of spanning of cap prices by the spot yields in the 3×3 model. Panel a reports the eigenvalues of the

A(τ) coefficients in the yield equation (15). We consider cap contracts with maturities of one to 10 years. The first line in panel

b contains the R2 values in regressions of caps on the first three principal components of yields (level, slope and curvature).

The second line presents the R2 values in regressions of cap prices on the (maximal set of) six principal components. Panel

c provides the principal component decomposition of the covariance matrix of residuals from the first regressions of different

maturity caps on the three yield PC’s. Panel d reports the R2 values in regressions of spot yields on six principal components

retrieved from the covariance matrix of cap prices.

a. Eigenvalues of A(τ ) coefficients

τ 1 2 3 4 5 6 7 8 9 10

λ1 −0.12 −0.23 −0.36 −0.50 −0.65 −0.81 −0.98 −1.15 −1.32 −1.48

λ2 −0.04 −0.06 −0.07 −0.08 −0.08 −0.08 −0.09 −0.09 −0.09 −0.09

λ3 2.7e-6 −2.3e-5 −3.6e-5 −4.4e-5 −4.8e-5 −5.2e-5 −5.5e-5 −5.7e-5 −5.8e-5 −6.0e-5

b. Regressions of ATM caps on yield PC’s

Cap maturity 1 2 3 4 5 6 7 8 9 10 Mean

3 PC’s∗, R2 55.5 73.0 74.6 70.8 64.8 57.4 48.7 39.0 29.1 19.6 53.2

6 PC’s, R2 91.5 88.9 84.2 79.0 73.2 66.6 59.0 50.5 41.6 32.9 66.7

∗ Note that regressions of each of the yields on the first three PC’s give the R2 of 1.

c. Decomposition of the covariance matrix of residuals

Eigenvector 1 2 3 4 5 6 7 8 9 10

% Explained 97.94 1.81 0.22 0.03 0.00 0.00 0.00 0.00 0.00 0.00

d. Regressions of yields on cap PC’s

Yield maturity 1 2 3 4 5 6 7 8 9 10 Mean

6 cap PC’s, R2 93.4 93.8 94.0 94.1 94.2 94.2 94.3 94.3 94.4 94.4 94.1

three additional factors influencing cap prices. These factors reflect the residual degrees of freedom which—

while present in the model—have not been exploited in its estimation with the spot yield data. Finally, to

fend off the criticism that the results are just a spurious effect of applying a linear regression to a nonlinear

problem, we reverse the first exercise, and regress the yields on factors obtained from caps. The ability of

caps to hedge the interest rate risk is evident in the high R2 values (on average 94 percent) reported in panel

d.

In ATSMs, the theoretical conditions for the existence of unspanned factors boil down to restricting the

coefficient loadings in the yield equation to be linearly dependent for all maturities, as first noted by Collin-

Dufresne and Goldstein (2002). Under such constraints, not all state variables are revealed through the yield

curve dynamics alone. This pioneering analysis has been recently expanded by Joslin (2006) who provides

general conditions for the incomplete bond markets in affine Rm
+ ×Rn−m models. His results, however, do not

carry over to the Wishart factor framework due to the different form of the state space. In a companion paper,
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Joslin (2007) shows that a four-factor ATSM with an unspanned volatility restriction is soundly rejected by

the data. An important—and so far unexplored—issue is whether such a conclusion would also persist in a

model of larger dimension and maximally flexible specification of factor volatilities.28 Our findings seem to

indicate that the completely affine enlarged WTSM provides a leeway to reconcile unspanned factors with

the remaining stylized facts of the yield curve. The characterization of the theoretical conditions for bond

market incompleteness in the Wishart yield curve setting is an interesting topic for future research.

V. Conclusions

In this article, we study the implications of a term structure model with stochastically correlated risk factors

driven by a matrix-valued Wishart process. Under this new class, we resurrect the completely affine market

price of risk specification and document that this setting provides a consistent explanation for several term

structure puzzles.

The model is endowed with three important characteristics: (i) the market price of risk can take both positive

and negative values, (ii) the correlation structure of factors is stochastic and unrestricted in sign, and (iii)

all factors display stochastic volatility leading to multivariate dynamics in second moments of yields. While

the first feature is shared with some essentially and extended affine models, the combination of the last two

represents the strength of our approach. With these levers, we provide answers to the following issues:

First, we are able to replicate the distributional properties of yields and the dynamic behavior of expected

bond returns. The predictability of returns in the Wishart framework violates the expectations hypothesis in

line with historical evidence. The model-implied population coefficients in the Campbell and Shiller (1991)

regressions are negative and increase in absolute value with time to maturity. Similarly, a steeper slope of

the term structure and a larger spot-forward spread forecast higher excess bond returns in the future.

Second, the model-implied conditional yield volatilities match the data in terms of GARCH estimates. We

document the superior performance of the model in generating the empirically relevant degree of volatility

persistence as compared to the preferred affine specifications estimated by Duffee (2002).

Third, we find that the term structure of the forward rate volatilities in the model is marked by a hump

around the two-year maturity. The result is preserved both instantaneously, and for the unconditional

volatilities of discretely spaced one-year forward rates generated by the model. The conditional hump is

further confirmed in Black implied volatilities of caps. Implicit in the volatility curves are the correlations

between the state variables, which unlike in the standard affine class are equally present under physical and

risk-neutral measures.

Several facts strengthen the findings just described. First, to illustrate its basic properties, we use the

most parsimonious formulation of the model. The choice of a 2 × 2 state matrix puts us in a three-factor

framework, with two positive and one unrestricted factor, and the simplest (completely affine) market price of

risk specification. In this form, the model is endowed with only 9 parameters to successfully perform the tasks

28Heidari and Wu (2003), for instance, point to a necessity of a Gaussian 3+3 factor model to explain the joint behavior of
yields and interest rate derivatives.
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listed above, while many of the best performing three-factor essentially or extended affine parameterizations

require at least twice this number. Second, using just a single set of parameters, we are largely able to

reconcile the first and second moments of model-implied yields with their historical counterparts. The factor

structure of the model permits us to reproduce both the unconditional and conditional features of the data,

as is evident in the persistent conditional volatilities and humped term structure of cap implied volatilities.

To appreciate this setting, it is also useful to recognize its analogies with the standard ATSMs. The argument

we apply to derive the market price of risk is the one that stands behind the completely affine class. Likewise,

for an arbitrary dimension of the Wishart state matrix, we benefit from the analytical tractability comparable

with a multifactor CIR model. In spite of these similarities, the theoretical properties of the state space and

its empirical coherence set this setting apart from several benchmark ATSMs.

The generality of the presented framework allows for a flexible extension beyond three factors. With the 3×3

dimension of the state space, the model has six factors, three of which are restricted in sign. While the gain

in flexibility is non-trivial, in terms of the number of parameters (18) the model still compares favorably to

the essentially or extended affine three-factor specifications. The enlarged model not only performs very well

across all dimensions mentioned above, but also has the right scope to tackle more complex dynamics of the

fixed income market. As a consequence, we are able to address several open issues exposed by the latest yield

curve literature: First, in the enlarged framework, the predictability of excess bond returns is supported by

the single forecasting factor of Cochrane and Piazzesi (2005). Second, the dynamic correlations of yields and

the comovement in their volatilities result in realistic properties of conditional hedge ratios between bonds.

Last but not least, some state variables—while loading weakly on yields—have an economically significant

impact on the prices of interest rate caps, thus evoking the notion of unspanned factors.
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Appendices

This section has the following structure. Appendix A derives and characterizes the equilibrium term structure
solution. Appendix B discusses the link between the QTSMs and the WTSM. Appendix C gives the closed-form
expressions for the two first moments of the state matrix and yields. Appendix D collects several useful results
for the Wishart process, which are applied throughout the remaining appendices. Appendices E and F provide the
estimation details and figures, respectively.

Throughout this Appendix the notation A > B, for two conformable matrices A and B, should be understood as
their difference A − B > 0 being a positive definite matrix.

A. Proofs: Term Structure of Interest Rates

A.1. Second Moments of the Short Interest Rate

Let D − In = C, a symmetric matrix. In a first step, we derive the expression for the instantaneous variance of the
interest rate. Applying Ito’s Lemma to the interest rate, we have that dr = Tr (CdΣ). By Result 3 in Appendix D,
we obtain the expression (6):

V art [Tr(CdΣ)] = 4Tr
(
CΣCQ′Q

)
dt = 4Tr

[
(D − In)Σ(D − In)Q′Q

]
dt

= 4Tr
[
(D − In)Q′Q(D − In)Σ

]
dt > 0.

With similar arguments, the expression for the covariance between the changes in the level and the variance of interest
rate follows. Let (D − In)Q′Q(D − In) = P , a symmetric matrix, and apply Ito’s Lemma to Vt:

Covt (dr, dV ) = Covt [Tr (CdΣ) , T r (PdΣ)] = 4Tr
[
PΣCQ′Q

]
dt

= 4Tr
[
(D − In) Q′Q (D − In) Q′Q (D − In)Σ

]
dt.

Note that the multiplier of Σ, i.e. H = (D − In)Q′Q (D − In) Q′Q (D − Idn), is again a symmetric matrix. �

A.2. Proof of Proposition 3: Solution for the Term Structure of Interest Rates

The coefficients A(t, T ) and b(t, T ) in the bond price expression are identified by inserting function (12) into the
pricing PDE (10) and solving the resulting matrix Riccati equation. Note that RP = A(t, T )P , and

∂P

∂t
= P

[
d

dt
b(t, T ) + Tr

(
d

dt
A(t, T )Σ

)]
, (A-1)

where for brevity P denotes the price at time t of a bond maturing at time T . The pricing PDE (10) can be expressed
as:

Tr
[(

ΩΩ′ + (M − Q′)Σ + Σ(M ′ − Q)
)
A + 2ΣAQ′QA

]
+

db

dt
+ Tr

(
dA

dt
Σ

)
− Tr [(D − In)Σ] = 0.

Matrix Riccati equation. The above equation holds for all t, T and Σ. By the matching principle, we get a system of
ODEs in A and b:

− db

dt
= Tr

(
ΩΩ′A

)
(A-2)

−dA

dt
= A(M − Q′) + (M ′ − Q)A + 2AQ′QA − (D − In). (A-3)

with the respective terminal conditions b(T, T ) = 0 and A(T, T ) = 0. For convenience, we consider A(·) and b(·)
as parametrized by the time to maturity τ = T − t. Clearly, this reparametrization merely requires the LHS of the
above system to be multiplied by −1:

db

dτ
= Tr

(
ΩΩ′A

)
(A-4)

dA

dτ
= A(M − Q′) + (M ′ − Q)A + 2AQ′QA − (D − In), (A-5)

with boundary conditions A(0) = 0 and b(0) = 0. We note that the instantaneous interest rate is:
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rt = lim
τ→0

− 1

τ
log P (t, τ ) = −db(0)

dτ
− Tr

(
dA(0)

dτ
Σt

)
= Tr [(D − In)Σt] .

A.2.1. Closed-form Solution to the Matrix Riccati Equation

The closed-form solution to the matrix Riccati equation (A-5) is obtained, via Radon’s lemma, by linearizing the flow
of the differential equation. For completeness, we give it in this Appendix. We express A(τ ) as:

A(τ ) = H(τ )−1G(τ ), (A-6)

for H(τ ) invertible and G(τ ) being a square matrix. Differentiating (A-6), we have:

d

dτ
[H(τ )A(τ )] =

dG(τ )

dτ
d

dτ
[H(τ )A(τ )] =

dH(τ )

dτ
A(τ ) + H(τ )

dA(τ )

dτ
.

Premultiplying (A-5) by H(τ ) gives:

H
dA

dτ
= HA(M − Q′) + H(M ′ − Q)A + 2HAQ′QA − H(D − In).

This is equivalent to:

dG

dτ
− dH

dτ
A = G(M − Q′) + H(M ′ − Q)A + 2GQ′QA − H(D − In),

where for brevity we suppress the argument τ of A(·), H(·) and G(·). After collecting coefficients of A in the last
equation, we obtain the following matrix-valued system of ODEs:

dG(τ )

dτ
= G(M − Q′) − H(D − In)

dH(τ )

dτ
= −2GQ′Q − H(M ′ − Q),

or written compactly:

d

dτ

(
G(τ ) H(τ )

)
=
(

G(τ ) H(τ )
) ( M − Q′ −2Q′Q

−(D − In) −(M ′ − Q)

)
.

The solution to the above ODE is obtained by exponentiation:

(
G(τ ) H(τ )

)
=

(
G(0) H(0)

)
exp

[
τ

(
M − Q′ −2Q′Q

−(D − In) −(M ′ − Q)

)]

=
(

A(0) In

)
exp

[
τ

(
M − Q′ −2Q′Q

−(D − In) −(M ′ − Q)

)]

=
(

A(0)C11(τ ) + C21(τ ) A(0)C12(τ ) + C22(τ )
)

=
(

C21(τ ) C22(τ )
)
,

where we use the fact that A(0) = 0, and

(
C11(τ ) C12(τ )
C21(τ ) C22(τ )

)
:= exp

[
τ

(
M − Q′ −2Q′Q

−(D − In) −(M ′ − Q)

)]
.

From equation (A-6), the closed-form solution to (A-5) is given by:

A(τ ) = C22(τ )−1C21(τ ),

whenever it exists. Given the solution for A(τ ), the coefficient b(τ ) is obtained directly by integration, and admits
the following closed form (da Fonseca, Grasselli, and Tebaldi, 2006):

b(τ ) = Tr

(
ΩΩ′

∫ τ

0

A(s)

)
ds = −k

2
Tr
[
ln C22(τ ) + τ (M ′ − Q)

]
.

�
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A.2.2. Characterization of the Solution to the Riccati Equation

In this section, we discuss the definiteness and monotonic properties of the solution to the matrix Riccati equation
(14) in Proposition 3. For convenience, we stick to the notation in equation (A-5) of the Appendix. Since both the
equation (A-5) and the terminal condition A(0) are real and symmetric, the solution must be real and symmetric on
the whole interval [0, τ ].

Negative definiteness of the solution. To discuss the definiteness of the solution, let us rewrite the equation:

dA(τ )

dτ
= A(τ )M̃ + M̃ ′A(τ ) + 2A(τ )Q′QA(τ ) + C, (A-7)

A(τ0) = 0, (A-8)

where τ0 = 0 and for brevity C = −(D − In) and M̃ = M − Q′, as the time-varying linear ODE of the form:

dA(τ )

dτ
= W ′(τ )A(τ ) + A(τ )W (τ ) + C,

where W (τ ) = M̃ + Q′QA(τ ). A well-known result from the control theory (see e.g. Brockett, 1970, p.59, p.162)
allows us to state the solution to this equation as:29

A(τ ) = Φ(τ, τ0)A(τ0)Φ
′(τ, τ0) +

∫ τ

τ0

Φ(s, τ0)CΦ′(s, τ0)ds =

∫ τ

τ0

Φ(s, τ0)CΦ′(s, τ0)ds, (A-9)

where Φ(·, ·) is the state transition matrix of the system matrix W (τ ) solving Φ̇(τ, τ0) = W ′(τ )Φ(τ, τ0), Φ(τ0, τ0) = In.
The RHS of equation (A-9) represents a congruent transformation of matrix C. Congruent transformations may change
the eigenvalues of a matrix but they cannot change the signs of the eigenvalues (Sylvester’s law of inertia). Thus,
given A(τ0) = 0, the necessary and sufficient condition for A(τ ) to be negative definite is that C < 0, therefore
D − In > 0.

Monotonic properties of the solution. To prove the monotonicity of the solution, let us differentiate the equation
(A-7) with respect to time to maturity, τ :

Ä(τ ) = Ȧ(τ )M̃ + M̃ ′Ȧ(τ ) + 2Ȧ(τ )Q′QA(τ ) + 2A(τ )Q′QȦ(τ )

= V ′(τ )Ȧ(τ ) + Ȧ(τ )V (τ ),

where V (τ ) = M̃ + 2Q′QA(τ ), and for convenience we use dot and double-dot notation for the first and second
derivative, respectively. The solution to this equation is given as:

Ȧ(τ ) = Φ(τ, τ0)Ȧ(τ0)Φ
′(τ, τ0),

with the state transition matrix Φ(τ, τ0) of the system matrix V (τ ) solving Φ̇(τ, τ0) = V ′(τ )Φ(τ, τ0), Φ(τ0, τ0) = In.
By plugging the terminal condition A(τ0) = 0 into equation (A-7), we have:

Ȧ(τ0) = C = −(D − In).

Therefore,
Ȧ(τ ) = Φ(τ, τ0)CΦ′(τ, τ0),

which is negative definite if C < 0. By integrating the above expression on the interval (s, t), s < t for some
s, t ∈ [τ0, τ1], we have:

A(t) − A(s) =

∫ t

s

Ȧ(u)du < 0.

Hence, A(τ ) declines with the time to maturity τ of the bond. �

A.3. Bond Returns

By Ito’s Lemma, for a smooth function φ(Σ, t) we have:

29To be exact, the statement (A-9) should express the solution in terms of some Π(τ) (rather than A(τ)), which solves the
matrix Riccati ODE (A-7). However, to keep the notation simple, with some abuse of notation, we state the solution in
terms of A(τ). This has no impact on the argument which ensues.
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dφ =

(
∂φ

∂t
+ LΣφ

)
dt + Tr

[
(
√

ΣdBQ + Q′dB′
√

Σ)Rφ
]
, (A-10)

where LΣ denotes the infinitesimal generator of the Wishart process. Using this result, the drift of the bond price
P (Σ, t, T ) can be written as:

1

dt
Et (dP ) =

∂P

∂t
+ LΣP

=
∂P

∂t
+ Tr

[(
ΩΩ′ + MΣ + Σ′M

)
RP + 2ΣR(Q′QRP )

]
.

From the fundamental PDE (10), we note that at equilibrium the drift must satisfy:

1

dt
Et (dP ) − Tr(ΦΣRP ) = rP.

By taking derivatives of the bond price with respect to the Wishart matrix, RP = A(τ )P , it follows that the expected
excess bond return (over the short rate) is given by:

eτ
t = Tr

[
(A(τ )Q′ + QA(τ ))Σt

]
(A-11)

= 2Tr [QA(τ )Σt] .

For completeness, we also provide the expression for the instantaneous variance of the bond return. From equation

(A-10), the diffusion part of the bond dynamics dP is given by Tr
[(√

ΣdBQ + Q′dB′
√

Σ
)

A(τ )P
]
. Using Result 3

in Appendix D, the instantaneous variance of the bond returns is:

V art

(
dP

P

)
= V art

[
Tr
((√

ΣdBQ + Q′dB′
√

Σ
)

A(τ )
)]

= 4Tr
[
A(τ )ΣA(τ )Q′Q

]
dt.

�

A.4. Dynamics of the Forward Rate

From the expression for the instantaneous forward rate:

f(t, τ ) = −∂ log P (t, t + τ )

∂τ
= −∂b(τ )

∂τ
− Tr

[
∂A(τ )

∂τ
Σt

]
,

the dynamics of f(t, τ ) can be computed from:

df(t, τ ) = −∂d log P (t, t + τ )

∂τ
.

By Ito’s Lemma, we first obtain the dynamics of the logarithm of the bond price from equation (12):

d log P =

[
− ∂b

∂τ
− Tr

(
∂A

∂τ
Σ

)
+ Tr

[
(ΩΩ′ + MΣ + ΣM ′)A

]]
dt + Tr

[
(
√

ΣdBQ + Q′dB′
√

Σ)A
]
.

By noting that the first two terms in the drift of d log P equal the forward rate f(t, τ ), we arrive at the instantaneous
forward rate dynamics:

df(t, τ ) = −
(

∂f

∂τ
+ Tr

[
(ΩΩ′ + MΣ + ΣM ′)

∂A

∂τ

])
dt − Tr

[(√
ΣdBQ + Q′dB′

√
Σ
) ∂A

∂τ

]
.

�

A.5. Pricing of Zero-Bond Options

Let ZBC(t,Σt; S, T, K) denote the price of a European option with expiry date S and exercise price K, written on a
zero-bond maturing at time T ≥ S:

ZBC(t, Σt; S, T, K) = P (t, T ) PrT
t {P (S, T ) > K} − KP (t, S)PrS

t {P (S, T ) > K}.
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A.5.1. Change of Drift for the Wishart Factors: The Forward Measure

To evaluate the two probabilities PrT
t and PrS

t in the above expression, we need to obtain the dynamics of the Wishart
process under the two forward measures associated with bonds maturing at time S and T , respectively.

The risk-neutral dynamics of a S-maturity zero-bond P (t, S) are:

dP (t, S)

P (t, S)
= rtdt + Tr(Θ′(t, S)dB∗

t ) + Tr(Θ(t,S)dB∗

t
′
), (A-12)

where Θ(t, S) =
√

ΣtA(t, S)Q′, A(t, S) and
√

Σt are symmetric, and A(t, S) solves the matrix Riccati equation (A-3).
The transformation from the risk neutral measure Q∗ to the forward measure QS is given by:

dQS

dQ∗
|FS

= eTr[
∫

S

0
Θ′(u,S)dB∗

u−
1
2

∫
S

0
Θ′(u,S)Θ(u,S)du],

where we use the fact that Tr(Θ′(t, S)dB∗

t ) = (vecΘ(t, S))′vec(dB∗

t ). By Girsanov’s theorem it follows:

dB∗

t = dBS
t +

√
ΣtA(t, S)Q′dt, (A-13)

where dBS
t is a n × n matrix of standard Brownian motions under QS . Arguing similarly, we have:

dB∗

t = dBT
t +

√
ΣtA(t, T )Q′dt, (A-14)

where dBT
t is a n × n matrix of standard Brownian motions under QT .

Remark 4. The measure transformations presented here are standard, but for the matrix-trace notation. Equiva-
lently, we could use the vector notation for the T -maturity bond dynamics:

dPt

Pt

= rtdt + vec(Θ)′vec(dB∗

t ) + vec(Θ′)′vec(dB∗

t
′
) (A-15)

Then:

vec(dB∗

t ) = vec(Θ)dt + vec(dBT
t ) = vec(Θdt + dBT

t ).

Reversing the vec operation, we obtain a matrix of Brownian motions: dB∗

t = dBT
t + Θdt. �

Recall that the risk-neutral dynamics of the Wishart process is given by:

dΣt =
(
ΩΩ′ + (M − Q′)Σt + Σt(M

′ − Q)
)
dt +

√
ΣtdB∗

t Q + Q′dB∗

t
′
√

Σt. (A-16)

We are now ready to express the dynamics of the process under the S-forward measure:

dΣt = {ΩΩ′ + [M − Q′(In − QA)]Σt + Σt[M
′ − (In − AQ′)Q]}dt +

√
ΣtdBS

t Q + Q′dBS
t

′√
Σt,

where for brevity we write A for A(t, S). The dynamics under the T -forward measure QT follows analogously.

A.5.2. Pricing of Zero-Bond Option by Fourier Inversion

Due to the affine property of the Wishart process, the conditional characteristic function of log-bond prices is available
in closed form. Thus, the pricing of bond options amounts to performing two one-dimensional Fourier inversions
under the two forward measures (see e.g., Duffie, Pan, and Singleton (2000)). We note that:

Prj
t{P (S, T ) > K} = Prj

t{b(S, T ) + Tr [A(S, T )ΣS] > lnK}, where j = {S, T}.

To evaluate this probability by Fourier inversion, we find the characteristic function of the random variable Tr[A(S,T )ΣS]
under the S- and T -forward measures. Let τ = S − t, then the conditional characteristic function is:

ΨS
t (iz; τ ) = ES

t

(
eizTr[A(t+τ,T )Σt+τ ]

)
, (A-17)

where ES
t denotes the conditional expectation under the S-forward measure, i =

√
−1, and z ∈ R. In the sequel,

we show the argument for the S-forward measure, the argument for the T -forward measure being analogous. By the
affine property of Σt, the characteristic function is itself of the exponentially affine form in Σt:

ΨS
t (iz; τ ) = eTr[Â(z,τ)Σt]+b̂(z,τ), (A-18)
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where Â(z, τ ) and b̂(z, τ ) are, respectively, a symmetric matrix and a scalar with possibly complex coefficients, which
solve the system of matrix Riccati equations (A-20)–(A-21) detailed below. With the characteristic functions of
Tr[A(S,T )ΣS] for the S- and T -forward measure at hand, we can express the bond option price by the Fourier
inversion as:

ZBC(t, S, T ) = P (t, T )

{
1

2
+

1

π

∫
∞

0

Re
e−iz[log K−b(S,T )]ΨT

t (iz; τ )

iz
dz

}

−KP (t, S)

{
1

2
+

1

π

∫
∞

0

Re
e−iz[log K−b(S,T )]ΨS

t (iz; τ )

iz
dz

}
,

in which the integral can be evaluated by numerical methods.

The coefficients Â(z, τ ) and b̂(z, τ ) in (A-18) are derived by the same logic as in Appendix A.2. By the Feynman-Kač
argument applied to (A-17), ΨS

t solves the following PDE:

∂ΨS
t

∂τ
= LΣΨS

t . (A-19)

Then, plugging for ΨS
t the expression (A-18), and collecting terms, gives the system of ordinary differential equations:

∂b̂(z, τ )

∂τ
= Tr[ΩΩ′Â(z, τ )] (A-20)

∂Â(z, τ )

∂τ
= Â(z, τ )MS + MS ′

Â(z, τ ) + 2Â(z, τ )Q′QÂ(z, τ ), (A-21)

where MS = M−Q′[In−QA(t,S)] results from the drift adjustment under the S-forward measure (given in Appendix
A.5.1). The boundary conditions at τ = 0 are:

b̂(0) = 0

Â(0) = ziA(S,T ).

By Radon’s lemma, the solution for Â(τ ) reads:

Â(τ ) = (ziA(S, T )Ĉ12 + Ĉ22)
−1(ziA(S, T )Ĉ11 + Ĉ21), (A-22)

with
(

Ĉ11(τ ) Ĉ12(τ )

Ĉ21(τ ) Ĉ22(τ )

)
:= exp

[
τ

(
MS −2Q′Q

0 −MS ′

)]
.

The coefficient b̂(z, τ ) is obtained by integration:

b̂(z, τ ) =

∫ τ

0

Tr[ΩΩ′Â(u)]du = −k

2
Tr
[
log(ziA(S,T )Ĉ12(τ ) + Ĉ22(τ )) + τMS ′

]
.

Remark 5. Let A = τ

(
M −2Q′Q
0 −M ′

)
. Since exp(A) =

∑
∞

i=0
A

i

i!
, then using the rules for the product of block

matrices, it is easily seen that the blocks of the matrix exp(A) are of the simple form:

Ĉ11(τ ) = eτM

Ĉ12(τ ) = 2

∞∑

d=1

1

d!
τd

d∑

j=1

(−1)j Md−jQ′Q
(
M ′
)j−1

Ĉ21(τ ) = 0n×n

Ĉ22(τ ) = e−τM′

.

�

B. Relation to the Quadratic Term Structure Models (QTSMs)

For an integer degree of freedom k, the n × n state matrix Σt can be represented as the sum of k outer products
of n-dimensional Ornstein-Uhlenbeck (OU) processes: Σt =

∑k

i=1 Xi
tX

i′
t . The OU dynamics is given by dXi

t =
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MXi
tdt + Q′dW i

t , where dW i
t is a n-vector of independent Brownian motions, and dW i

t , dW j
t are independent for

i 6= j. First, we show the equivalence of the dynamics d
(∑k

i=1 Xi
tX

i′
t

)
and dΣt. Then, we discuss the link to QTSMs.

By the independence of the OU processes, we can write d(
∑k

i=1 Xi
tX

i′
t ) =

∑k

i=1 d(Xi
tX

i′
t ), where:

d(Xi
tX

i′
t ) = Xi

tdXi′
t + dXi

tX
i′
t + dXi

tdXi′
t

= Xi
t (MXi

tdt + Q′dW i
t )

′ + (MXi
tdt + Q′dW i

t )X
i′
t + (MXi

tdt + Q′dW i
t )(MXi

tdt + Q′dW i
t )′

= (Q′Q + MXi
tX

i′
t + Xi

tX
i′
t M ′)dt + Q′dWtX

i′
t + Xi

tdW i′
t Q.

By summing over i = 1, . . . , k, we get:

d(
k∑

i=1

Xi
tX

i′
t ) = (kQ′Q + M

k∑

i=1

Xi
tX

i′
t +

k∑

i=1

Xi
tX

i′
t M ′)dt + Q′

k∑

i=1

dW i
t Xi′

t +
k∑

i=1

Xi
tdW i′

t Q. (B-23)

Clearly, the drift in expression (B-23) is identical to the drift of dΣt in equation (3). Next, we show the distributional
equivalence between the diffusion parts in (3) and (B-23). It suffices to consider the instantaneous covariance between
the following matrix forms (a, b, c, f are n-vectors):

Covt[a
′d(Xi

tX
i′
t )b, c′d(Xi

tX
i′
t )f ] = E[a′(Xi

tdW i′
t Q + Q′dW i

t Xi′
t )b c′(Xi

tdW i′
t Q + Q′dW i

t Xi′
t )f ]

= (b′Q′Qf a′Xi
tX

i′
t c + b′Q′Qc a′Xi

tX
i′
t f + a′Q′Qf b′Xi

tX
i′
t c + a′Q′Qc b′Xi

tX
i′
t f)dt. (B-24)

Note that when a, b, c, f are different unit vectors in Rn, expression (B-24) characterizes all second moments of
d(Xi

tX
i′
t ). By independence of Xi

t , X
j
t , i 6= j, the result easily extends to

∑k

i=1 Xi
tX

i′
t :

Covt[a
′d(

k∑

i=1

Xi
tX

i′
t )b, c′d(

k∑

i=1

Xi
tX

i′
t )f ]

= (b′Q′Qf a′

k∑

i=1

Xi
tX

i′
t c + b′Q′Qc a′

k∑

i=1

Xi
tX

i′
t f + a′Q′Qf b′

k∑

i=1

Xi
tX

i′
t c + a′Q′Qcb′

k∑

i=1

Xi
tX

i′
t f)dt. (B-25)

The expression (B-25) is equivalent to the covariation between different elements of Σt in Result 1 of Appendix D.
Thus, the diffusion parts of d(

∑k

i=1 Xi
tX

i′
t ) and dΣt are distributionally equivalent.

When k = 1, Σt becomes singular. We can recast the model in terms of the single OU vector process as:

d(X1
t X1′

t ) = (Q′Q + MX1
t X1′

t + X1
t X1′

t M ′)dt + Q′dWtX
1′
t + X1

t dW 1′
t Q, (B-26)

where dX1
t = MX1

t dt + Q′dW 1
t . In this special case, our model has a direct analogy to a n−factor quadratic term

structure model (QTSM) of Ahn, Dittmar, and Gallant (2002) and Leippold and Wu (2002), with the underlying
OU dynamics of X1

t that has no intercept. Table VI compares the corresponding elements in the two settings. We
preserve the notation used by Ahn, Dittmar, and Gallant (2002) for the QTSMs, and map it into the notation used
throughout our paper.

B.1. Unique invertibility of the state

The affine property of yields in the elements of Σt represents an advantage of our setting over the QTSMs. When
k ≥ n, the state variables in Σt can be uniquely backed out from the observed yields. In particular, an n × n
state matrix Σt can be identified from n̄ = n(n+1)

2
yields. Let us stack the yields in a vector using the fact that

Tr [A (τ )Σt] = [vecA(τ )]′ vecΣt:




yt(τ1)
yt(τ2)

...
yt(τn̄)


 = −




1
τ1

b(τ1)
1
τ2

b(τ2)
...

1
τn

b(τn̄)




−




1
τ1

vecA(τ1)
′

1
τ2

vecA(τ2)
′

...
1

τn
vecA(τn̄)′




vec(Σt),

or in a short-hand vector-matrix notation:
~yt = −~b − A vec(Σt).

To be able to invert the last expression for the unique elements of Σt, we prune the non-unique elements of A and
vec(Σt) by using the half-vectorization:

~yt = −~b − ASn vech (Σt) ,
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Table VI: Quadratic versus Wishart factor model

The table presents a mapping between the QTSM of Ahn, Dittmar, and Gallant (2002) and the WTSM. For readability, we

preserve the respective notations.

QTSM(n) WTSM(n × n) k = 1

State variables

dYt = (µ + ξYt)dt + ΣdWt dXt = MXtdt + Q′dWt

µ = 0, ξ = M, Σ = Q′

Short rate

rt = α + β′Yt + Y ′
t ΨYt rt = X ′

t(D − In)Xt

β = 0 (identification) α = 0, β = 0
Ψ = D − In

Market price of risk

Λt = δ0 + δ1Yt Λt = Xt

δ0 = 0, δ1 = In

where Sn is a duplication matrix of dimension n2 × n(n+1)
2

such that Snvech(Σt) = vec(Σt). It follows that the state
is identified from yields as:

vech(Σt) = −(ASn)−1(~yt +~b).

C. Moments of the factors and yields

To provide a general formulation for the moments of the Wishart process, we proceed via the conditional Laplace
transform. The derivation, which starts from the Laplace transform of the discrete time process, holds true also for
non-integer degrees of freedom k, and thus does not require the restrictive interpretation of Σt as the sum of outer
products of OU processes. The assumption of an integer k is implicit only via the mapping between the discrete and
continuous time parameters of the process, which we discuss next.

C.1. Moments of the discrete time Wishart process

The Wishart process allows for an exact discretization, i.e. there exists an explicit mapping between the discrete and
continuous time parameters of the process:

Φ∆ = eM∆ (C-27)

V∆ =

∫ ∆

0

ΦsQ
′QΦ′

sds, (C-28)

where ∆ denotes the discretization horizon. These expressions are the well-known conditional moments of the
underlying multivariate OU process and hence are stated without proof.30 For the tractability of subsequent
derivations, we use the above mapping along with the conditional Laplace transform of the discrete time process
to compute the moments of the continuous time process.

C.1.1. Laplace transform of the Wishart process

Let Σ∆|Σ0 ∼ Wis(k,Φ, V ). The conditional Laplace transform of Σ∆|Σ0 = Σ is given by (see e.g. Muirhead, 1982,
p. 442):

Ψ∆(Θ) := E0[exp(Tr(ΓΣ∆))|Σ0 = Σ]

= exp

{
Tr[Φ′

∆Γ(In − 2V∆Γ)−1Φ∆Σ] − k

2
log det(In − 2V∆Γ)

}
,

where Γ := Γ(Θ) and Γ = (γij) , i, j = 1, ..., n with γij = 1
2

(1 + δij) θij , where δij is the Kronecker delta:

30See e.g. Fisher and Gilles (1996b) for a detailed derivation of the conditional moments of a general affine process.
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δij =

{
1 if i = j
0 if i 6= j.

The cumulant generating function is:

K∆(Θ) := log Ψ∆(Θ) =

{
Tr[Φ′

∆Γ(In − 2V∆Γ)−1Φ∆Σ] − k

2
log det(In − 2V∆Γ)

}
.

In the sequel, we use the shorthand notation Γ to be understood as Γ(Θ). For brevity, the subscript ∆ at Φ and V
denoting the discretization horizon is neglected.

C.1.2. Moments of the Wishart process

The moments of the process are obtained by evaluating the derivatives of the Laplace transform (cumulant generating
function) at Γ = 0.

We apply the following definition of the derivative of some function F (possibly matrix-valued) with respect to the
matrix argument (Magnus and Neudecker, 1988, p. 173):

DF (Θ) :=
d vecF (Θ)

d(vecΘ)′
.

Lemma 3. The closed-form expression for the first order derivative of the conditional cumulant generating function
K(Θ):

DK(Θ) =
dK(Θ)

d (vecΘ)′
= P1(Θ) + P2(Θ) (C-29)

where

P1(Θ) = vec[(In − 2V Γ)−1ΦΣΦ′(In − 2ΓV )−1]′

P2(Θ) = k vec[V (In − 2ΓV )−1]′.

Proof. The proof is an application of matrix calculus rules to the cumulant generating function:

DK(Θ) =
dK(Θ)

d (vecΘ)′

=
d Tr[Φ′Γ(In − 2V Γ)−1ΦΣ]

d (vecΘ)′︸ ︷︷ ︸
P1(Θ)

− k

2

d (log det(In − 2V Γ))

d (vecΘ)′︸ ︷︷ ︸
P2(Θ)

Corollary 4 (First moment of the Wishart process). From the results in Lemma 3, the expression for the first
conditional moment of Σ∆|Σ0 = Σ follows immediately:

E((vecΣ∆)′|Σ0 = Σ) =
dK(0)

d(vecΘ)′
= P1(0) + P2(0) =

(
vec(ΦΣΦ′ + kV )

)′
.

Equivalently, in matrix notation:
E(Σ∆|Σ0 = Σ) = ΦΣΦ′ + kV.

�

Remark 6. The first moment of the Wishart process is straightforward to obtain for the integer degree of freedom
k. Let xi

t denote the OU process with the discrete time dynamics:

xi
t = Φxi

t−∆ + ǫi
t, where ǫi

t ∼ N(0, V ).

For an integer k, the Wishart is constructed as Σt =
∑

i
xi

tx
i′
t , and we have:

∑

i

xi
tx

i′
t =

∑

i

(Φxi
t−∆ + ǫt)(Φxi

t−∆ + ǫt)
′

Et−∆(
∑

i

xi
tx

i′
t ) = ΦΣtΦ

′ + Et−∆(
∑

i

ǫi
tǫ

i′
t ) = ΦΣtΦ

′ + kV.
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In contrast, our derivation via the Laplace transform is more generic as it does not rely (at least in the discrete time
case) on the link between the Wishart and the OU process. Thus, the assumption of integer degrees of freedom is
not required. Moreover, if we relax the restriction that ΩΩ′ = kQ′Q in the drift of the continuous time Wishart, then
the conditional first moment can be further generalized to:

Et (Σt+∆) = e∆MΣte
∆M′

+

∫ ∆

0

esMΩΩ′esM′

ds,

where the last expression follows from the Laplace transform of the continuous time process. �

The second derivative of K(Θ) is defined as (see Magnus and Neudecker, 1988, p. 188):

HK(Θ) = D (DK(Θ))′ =
dvec [DK(Θ)]′

d (vecΘ)′
. (C-30)

Lemma 5. The closed-form expression for the second order derivative (C-30) is defined as:

HK(Θ) = (In2 + Kn) {R1(Θ) ⊗ R2(Θ) + K [R2(Θ) ⊗ R2(Θ)] + R2(Θ) ⊗ R1(Θ)} ,

where

R1(Θ) = (In − 2V Γ)−1 ΦΣΦ′ (In − 2ΓV )−1

R2(Θ) = (In − 2V Γ)−1 V,

where In2 is an n2 ×n2 identity matrix, and Kn,n is the commutation matrix defined as: vecS′ = Kn,nvecS for some
square matrix S.

Proof. The above expression follows from taking the following derivatives:

d vec [DK(Θ)]′

d (vecΘ)′
=

d

d(vecΘ)′

[
dK(Θ)

d (vecΘ)′

]′
=

d P ′

1(Θ)

d(vecΘ)′
+

d P ′

2(Θ)

d(vecΘ)′
.

Corollary 6 (Second moment of the Wishart process). With the results in Lemma 5, the second conditional moments
of Σ∆|Σ0 = Σ follow:

E[vec(Σ∆)vec(Σ∆)′|Σ0 = Σ] = HΨ(0) = [DK(0)]′ [DK(0)] + HK(0).

Therefore:

E[vec(Σ∆)vec(Σ∆)′|Σ0 = Σ] = vec(ΦΣΦ′ + kV )vec(ΦΣΦ′ + kV )′

+ (In2 + Kn,n)[ΦΣΦ′ ⊗ V + k(V ⊗ V ) + V ⊗ ΦΣΦ′].

Importantly, Result 4 and 6 cover the general case of non-integer degrees of freedom k > n−1. The integer degrees of
freedom is implicit only through the mapping between the continuous and discrete time parameters in (C-27)–(C-28).

C.1.3. Closed-form expressions for the matrix integrals

The conditional moments of the Wishart involve the evaluation of:

Vτ =

∫ τ

0

ΦsQ
′QΦ′

sds. (C-31)

The closed-form expression for this integral is given as:

∫ τ

0

eMsQ′QeM′sds = −1

2
Ĉ12(τ )Ĉ′

11(τ ), (C-32)

where Ĉ11(τ ) and Ĉ12(τ ) are blocks of the matrix exponential associated with the coefficients of the Laplace transform
of the continuous time Wishart process:
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exp

[
τ

(
M −2Q′Q
0 −M ′

)]
=

(
Ĉ11(τ ) Ĉ12(τ )

Ĉ21(τ ) Ĉ22(τ )

)
. (C-33)

In applications, the expression (C-31) turns out numerically stable (for finite maturities) and computationally very
efficient.

Proof. The elements of the matrix exponential can be expressed as (see Van Loan, 1978, Thm. 1):

Ĉ11(τ ) = eMτ

Ĉ12(τ ) =

∫ τ

0

eM(τ−s)(−2Q′Q)e−M′sds

Ĉ21(τ ) = 0n×n

Ĉ22(τ ) = e−M′τ

Postmultiplying the expression for Ĉ12(τ ) by Ĉ′

11(τ ) = eM′τ and applying the change of variable u = τ − s, yields:

Ĉ12(τ )Ĉ′

11(τ ) = −
∫ τ

0

eMu(2Q′Q)eM′udu.

After reformulating, the result follows:

∫ τ

0

eMuQ′QeM′udu = −1

2
Ĉ12(τ )Ĉ′

11(τ ).

A similarly tractable and computationally efficient expression is readily available for the limit of the integral (C-31),
which occurs in the unconditional moments of the Wishart process. In vectorized form, we have:

vecV∞ = vec

(
lim

τ→∞

∫ τ

0

ΦsQ
′QΦ′

sds

)

= − [(In ⊗ M) + (M ⊗ In)]−1 vec(Q′Q). (C-34)

Proof. We exploit the relationship between the integral (C-34) and the solution to the following Lyapunov equation:

MX + XM ′ = Q′Q,

which can be written as (see e.g. Laub, 2005, p. 145):

X = −
∫

∞

0

eMsQ′QeM′sds.

At the same time, the solution for X can be expressed in closed-form using the relationship between the vec operator
and the Kronecker product, vec(IXM) = (M ′ ⊗ I)vecX. This results in:

vecX = [(In ⊗ M) + (M ⊗ In)]−1 vec(Q′Q).

Thus, the integral can be efficiently computed as:

vec

(∫
∞

0

eMsQ′QeM′sds

)
= − [(In ⊗ M) + (M ⊗ In)]−1 vec(Q′Q).

C.2. Moments of yields

For the unconditional moments of yields to exist, we require M < 0. Since the unconditional first moment is
straightforward to obtain, we only focus on the second moment. Its general specification comprises a cross moments
of yields, one of which possibly lagged:
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Cov(yτ1

t+s, y
τ2
t ) =

1

τ1τ2
{E [Tr(Aτ1

Σt+s)Tr (Aτ2
Σt)] − E [Tr(Aτ1

Σt+s)] E [Tr (Aτ2
Σt)]}

=
1

τ1τ2

{
E
[
(vecAτ1

)′ vecΣt+s (vecΣt)
′ vecAτ2

]
− (vecAτ1

)′ vecEΣt+s (vecEΣt)
′ vecAτ2

}

=
1

τ1τ2

{
E
[
(vecAτ1

)′
[
vec

(
ΦsΣtΦ

′

s

)]
(vecΣt)

′ (vecAτ2
)
]
− (vecAτ1

)′
[
vec

(
ΦsEΣtΦ

′

s

)]
(vecEΣt)

′ vecAτ2

}

=
1

τ1τ2
(vecAτ1

)′ (Φs ⊗ Φs)
[
E(vecΣt(vecΣt)

′) − (vecEΣt) (vecEΣt)
′
]
vecAτ2

=
1

τ1τ2
vec

(
ΦsAτ1

Φ′

s

)′
[Cov(vecΣt)] vecAτ2

,

where when moving from the second to the third line, we have used the law of iterated expectations:

E
[
vecΣt+s (vecΣt)

′
]

= E
[
Et

(
vecΣt+s (vecΣt)

′
)]

= E
[
vec

(
ΦsΣtΦ

′

s

)
(vecΣt)

′ + k vecVs (vecΣt)
′
]
.

To obtain a contemporaneous covariance, note that Φs=0 = e0 = In. Therefore:

Cov(yτ1
t , yτ2

t ) =
1

τ1τ2
(vecAτ1

)′ [Cov(vecΣt)] vecAτ2
.

D. Useful Results for the Wishart Process

Result 1. The following result facilitates the computation of the second moments of the Wishart process. Given
n × n Wishart SDE dΣ in equation (3) and arbitrary n-dimensional vectors a, b, c, f it follows:

Covt

(
a′dΣtb, c

′dΣtf
)

=
(
a′Q′Qfb′Σtc + a′Q′Qcb′Σtf + b′Q′Qfa′Σtc + b′Q′Qca′Σtf

)
dt.

Covariances between arbitrary quadratic forms of dΣ are linear combinations of quadratic forms of Σ. In particular,
both drift and instantaneous covariances of the single components of the matrix process Σ are themselves affine
functions of Σ.

Using the above results, it is straightforward to compute the (cross-)second moments of factors in the 2 × 2 case:

d〈Σ11〉t = 4Σ11

(
Q2

11 + Q2
21

)
dt

d〈Σ22〉t = 4Σ22

(
Q2

22 + Q2
12

)
dt

d〈Σ12〉t =
[
Σ11

(
Q2

12 + Q2
22

)
+ Σ22

(
Q2

11 + Q2
21

)
+ 2Σ12 (Q11Q12 + Q21Q22)

]
dt

d〈Σ11, Σ22〉t = 4Σ12 (Q11Q12 + Q21Q22) dt

d〈Σ11, Σ12〉t =
[
2Σ11 (Q11Q12 + Q21Q22) + 2Σ12

(
Q2

11 + Q2
21

)]
dt

d〈Σ22, Σ12〉t =
[
2Σ22 (Q11Q12 + Q21Q22) + 2Σ12

(
Q2

22 + Q2
12

)]
dt,

where Σij and Qij denote the ij-th element of matrix Σ and Q, respectively. More generally, for an arbitrary
dimension n of the state matrix, we obtain:

d〈Σii〉t = 4ΣiiQ
i′Qidt

d〈Σii, Σjj〉t = 4ΣijQ
i′Qjdt,

where Qi, Qj denote the i-th and j-th column of the Q matrix, respectively.

Result 2. The special case of the above result has been given by Gourieroux (2006):

Covt

(
α′dΣtα, β′dΣtβ

)

= Covt

[
α′

(√
ΣtdBtQ + Q′dB′

t

√
Σt

)
α, β′

(√
ΣtdBtQ + Q′dB′

t

√
Σt

)
β
]

= Et

[(
α′
√

ΣtdBtQα + α′Q′dB′

t

√
Σtα

) (
β′
√

ΣtdBtQβ + β′Q′dB′

t

√
Σtβ

)]

= 4
(
α′Σtβα′Q′Qβ

)
dt,

where for any n-dimensional vectors u and v it holds that:

Et

(
dBtuv′dBt

)
= Et

(
dB′

tuv′dB′

t

)
= vu′dt

Et

(
dBtuv′dB′

t

)
= Et

(
dB′

tuv′dBt

)
= v′uIndt.
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Result 3. Given square matrices A and C, we have:

Covt [Tr(AdΣt), T r(CdΣt)] = Tr
[
(A + A′)Σt(C + C′)Q′Q

]
dt. (D-35)

Moreover, for a square matrix A it holds that:

V art [Tr(AdΣt)] = Tr
[
(A + A′)Σt(A + A′)Q′Q

]
dt > 0 iff Σt > 0. (D-36)

In contrast to Gourieroux and Sufana (2003), in obtaining these results we do not impose definiteness restrictions on
A and C.

Proof. To derive the result, we can directly consider the expectation of the product of the two traces:

Covt [Tr(AdΣt), T r(CdΣt)] =

Et

[
Tr
(
A
√

ΣtdBtQ + AQ′dB′

t

√
Σt

)
Tr
(
C
√

ΣtdBtQ + CQ′dB′

t

√
Σt

)]
.

The above expression can be split into the sum of four expectations. For brevity, we only provide the derivation for
one of the terms:

Et

[
Tr
(
A
√

ΣtdBtQ
)

Tr
(
CQ′dB′

t

√
Σt

)]
=

= Et

[(
vec

(
QA

√
Σt

)
′
)′

(vec dBt)
(
vec

(√
ΣtCQ′

)
′
)′ (

vec dB′

t

)]

= Et

[(
vec

(
QA

√
Σt

)′)′

(vec dBt) (vec dBt)
′ Kn,n

(
vec

(√
ΣtCQ′

)′)]

=
(
vec

(
QA

√
Σt

)
′
)′ (

vec
(√

ΣtCQ′

))
dt = Tr

[
CQ′QAΣ

]
dt.

where Kn,n is the commutation matrix (thus Kn,n = K′

n,n), and we apply the following facts:

Et

[
(vec dBt) (vec dBt)

′
]

= Et

[(
vec dB′

t

) (
vec dB′

t

)′]
= In2dt

and

Tr
(
QA

√
ΣtdBt

)
=
(
vec(

√
ΣtAQ′)′

)
′

vec(dBt).

To prove the positivity of V art [Tr(AdΣt)] in equation (D-36), note that:

Tr
[
(A + A′)Σt(A + A′)Q′Q

]
= Tr

[
Q(A + A′)Σt(A + A′)Q′

]
.

The expression within the trace on the RHS is a congruent transformation of the Wishart matrix Σ, which (by
Sylvester’s law) can change the values but not the signs of matrix eigenvalues. Thus, provided that Σt > 0, it follows
that Q(A + A′)Σt(A + A′)Q′ > 0. Combining this result with the properties of the trace we have:

Tr
[
Q(A + A′)Σt(A + A′)Q′

]
=

n∑

i=1

λi > 0,

where λi denotes the eigenvalue of Q(A + A′)Σt(A + A′)Q′.

Result 4. If Σt is a Wishart process and C is a positive definite matrix, then the scalar process Tr(CΣt) is positive
(see Gourieroux (2006)).

Proof. By the singular value decomposition, a symmetric (positive or negative) definite n×n matrix D can be written
as D =

∑n

j=1 λjmjm
′

j , where λj and mj are the eigenvalues and eigenvectors of D, respectively. Let D be positive
definite, and we get:

Tr(DΣ) = Tr

(
n∑

j=1

λjmjm
′

jΣ

)
=

n∑

j=1

λjTr(mjm
′

jΣ)

=
n∑

j=1

λjTr(m′

jΣmj) =
n∑

j=1

λjm
′

jΣmj > 0,

where we use the facts that: (i) we can commute within the trace operator, (ii) λj > 0 for all j, and (iii) Σ is positive
definite. Note that for a positive definite n × n matrix D =

∑n

j=1 aja
′

j , where aj =
√

λjmj .
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E. Details on the Estimation Approach

E.1. The 2 × 2 Model

The 2×2 model comprises 9 parameters: the elements of matrices M, Q′ (both lower triangular) and D (symmetric),
plus an integer value of the degrees of freedom parameter k. The estimation is based on 11 moment conditions (see
Table VII). The following steps describe our optimization technique:

Step 1. For M, Q and D, generate Imax = 200 from the uniform distribution under the condition that: (i) the
diagonal elements of M are negative, (ii) the eigenvalues of D − In are positive.

Step 2. Select the possible degrees of freedom k on a grid of integers from 1 to 9.

Step 3. Run 9 × 200 optimizations (for each k and each Imax) in order to select 10 parameter sets with the lowest
value of the loss function.

Step 4. To determine the final parameter values, improve on the selected parameter sets using a gradient-based
optimization routine (Matlab lsqnonlin).

This optimization procedure gives rise to k = 3 and to the parameters:

D =

(
1.0281 0.0047
0.0047 1.0018

)
,

M =

(
−0.1263 0

0.0747 −0.6289

)
,

Q =

(
0.4326 −2.9238

0 −0.5719

)
.

The matrices satisfy the theoretical requirements: (i) the M matrix is negative definite, i.e. Σt does not explode; (ii)
the Q matrix is invertible, i.e. Σt is reflected towards positivity whenever the boundary of the state space is reached;
and (iii) the D−I2 matrix is positive definite with eigenvalues (0.0010, 0.0289), i.e. the positivity of yields is ensured.
Table VII summarizes the percentage errors for the respective moment conditions and yields used in estimation.

Table VII: Fitting errors for the 2 × 2 model

The table presents percentage fitting errors for the moments of the 6-month, 2-year and 10-year yields. The percentage
error is the difference between the model-implied and the empirical value of a given moment per unit of its empirical
value. All errors are in percent.

Maturities used Error (%)

Average yτ
t 6M, 2Y, 10Y -0.27 -0.59 0.86

Volatility yτ
t 6M, 2Y, 10Y 0.35 -0.19 -0.78

Corr. yτ1 , yτ2 (6M,2Y), (6M,10Y), (2Y,10Y) -1.77 1.63 2.44
CS coeff. n = 2Y, 10Y; m = 6M -0.15 0.00 –

E.2. The 3 × 3 Model

Our 3 × 3 framework is described by 18 parameters in M, Q and D matrices, plus the degrees of freedom parameter
k. The estimation involves 24 moment conditions summarized in Table VIII. The optimization technique follows the
same steps as for the 2× 2 model. The final set of parameters has k = 3 degrees of freedom, and the following M, Q
and D matrices:
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D =




1.0396 0.0224 −0.0094
0.0224 1.1412 0.0117

−0.0094 0.0117 1.0043


 ,

M =




−0.8506 0 0
0.2249 −0.0787 0

−2.2800 −2.4125 −0.9121


 ,

Q =




1.3276 −0.2950 5.2410
0 −0.0453 0.0667
0 0 −0.6443


 .

Note from the diagonal elements, the M matrix is negative definite, and the Q matrix is invertible. The matrix
D−I3, however, is not positive definite with eigenvalues (−0.0001, 0.0387, 0.1465). Even though there is a theoretical
probability that yields become negative, the empirical frequency of such occurrences is zero across all maturities (based
on the simulated sample of 72000 monthly observations). The violation of positive definiteness is thus inconsequential.

Table VIII: Fitting errors for the 3 × 3 model

The table presents percentage fitting errors for the moments of the 6-month, 2-year, 5-year and 10-year yields. The
percentage error is the difference between the model-implied and the empirical value of a given moment per unit of
its empirical value. All errors are in percent.

Moment Maturities used Error (%)

Average yτ
t 6M, 2Y, 5Y, 10Y 0.22 -0.40 0.16 -0.03

Volatility yτ
t 6M, 2Y, 5Y, 10Y 0.85 -2.45 2.06 -0.23

Corr. yτ1 , yτ2 (6M,2Y), (6M,5Y), (6M,10Y), (2Y,10Y) -0.39 0.17 0.16 -0.23
Corr. ∆yτ1 , ∆yτ2 (6M,2Y), (6M,10Y), (2Y,10Y) -0.01 -0.03 0.02 –
CS coeff. n = 2Y, 10Y; m = 6M -0.00 -0.00 – –
Forward rate volatility 6M→2Y, 2Y→5Y, 5Y→10Y -3.38 4.99 -2.15 –
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F. Figures
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a. Realized 10Y yield volatility (left axis) vs. 10Y–3M spread (right axis)
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Figure 1: Term spreads and yield volatilities during 1994/95 and 2004/05 tightenings

Panel a plots interest rate volatilities (left axis) and yield spread (right axis) covering the period from
1991:01 to 2007:12. The shadings mark the 1994/95 and 2004/05 tightenings. The yield volatility is the
22-day moving average of realized daily volatilities (vτ (t + h), h = 1 day) obtained from high-frequency
returns on 10-year Treasury note futures, where v2

τ (t + h) = 1
τ2

∑n
i=1 r2(t + ih

n ), n = 40, and r(t + ih
n ) is

the 10-minute log return×100 on the futures contract. The spread is computed as the difference between
the 10-year yield minus the 3-month T-bill rate. Panels b and c give a zoomed view on the dynamics of
the 3-month, 1-year and 10-year yields during 1994/95 and 2004/05 episodes, respectively. Data sources:
Tick-by-tick interest futures prices are from TickData.com, zero yields—from Gurkaynak, Sack, and Wright
(2006) files, and 3-month T-bill rate—from Fed’s H.15 files.
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Figure 2: Instantaneous correlations of positive factors for different k’s in the 2×2 WTSM

Panels a, b, and c plot the instantaneous correlations between the diagonal factors Σ11 and Σ22 in the 2× 2
WTSM with k = 1, 3 and 7 degrees of freedom, respectively. The panels on the left show the consecutive
realizations of the instantaneous correlations calculated according to equation (24), while the panels on the
right display their respective histograms. In the degenerate case of k = 1, the WTSM narrows down to a
QTSM.
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Figure 3: Unconditional distribution of the 5-year yield for different k in the 2×2 WTSM

Panel a presents boxplots of the 5-year yield in the 2 × 2 model with k = 1, 3 and 7 degrees of freedom,
respectively. The results are juxtaposed with the US 5-year yield (1952:01–2005:06). Panels b, c and d
illustrate the related empirical cumulative distribution functions both for the model (thick line) and for the
data (dashed thin line). The solid thin lines mark the 99% upper and lower confidence bounds computed
from the data with the standard Greenwood’s formula.
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Figure 4: Actual and model-implied unconditional distributions of the 5-year yield

Panel a presents the densities of the 5-year yield obtained from the 2×2 WTSM with different degrees of
freedom k. The results are superposed with the histogram of the 5-year US yield (1952:01–2005:06). Panel
b shows the preferred ATSMs estimated by Duffee (2002): Gaussian A0(3), mixed models A1(3) and A2(3),
and compares them with the histogram of the 5-year US yields (Duffee’s sample 1952:01–1994:12).
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Figure 5: Loadings of yields on principal components: 2 × 2 WTSM vs. data

The covariance matrix of yields is decomposed as UΛU ′, where U is the matrix of eigenvectors normalized to
have unit lengths, and Λ is the diagonal matrix of associated eigenvalues. The figure shows columns (factor
loadings) of U associated with the three largest eigenvalues. Thicker circled lines indicate loadings of yields
obtained from the 2 × 2 WTSM (k = 3). Finer lines are loadings obtained from the sample of US yields,
1952:01–2005:06. The legend gives the corresponding percentages of yield variance explained by the first
three principal components.
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Figure 6: Variance explained by principal components, conditional on factor correlation

The figure shows the portions of yield variance explained by each principal component. The principal
components of yields are computed conditional on the level of instantaneous correlation of factors in the
2× 2 WTSM (k = 3). We form eight correlation bins, and number them from 1 (highest) to 8 (lowest). The
bins are in descending order: (1, .9), (.9, .8), (.8, .5), (.5, 0), (0,−.5), (−.5,−.8), (−.8,−.9), (−.9,−1). Two
sort criteria are used: the left-hand panel sorts by the level of Corrt(Σ11, Σ22), the right-hand panel—by the
level of Corrt(Σ22, Σ12).
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Figure 7: Conditional principal components of yields in the 2 × 2 WTSM

The figure displays the principal component decomposition of the instantaneous covariance of yields
conditional on the level of the instantaneous correlation of factors in the 2 × 2 WTSM (k = 3). The
shaded areas show the percentage of the conditional variance explained by the first principal component
(upper panel) and the second principal component (bottom panel). The impact of the third factor ranges
from 0 to 0.5 percent, and thus is not presented. The instantaneous conditional covariance of yields is given
in expression (16). We consider 13 model-implied yields with maturities from 3 months to 10 years. The
shaded areas are obtained as contours of scatter plots based on 72000 observations simulated from the model.
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Figure 8: Properties of expected excess bond returns in the 2 × 2 WTSM

Panels a and b display the instantaneous expected excess returns on a 3-month and 5-year bond, respectively,
as implied by the 2 × 2 Wishart factor model (k = 3). The expected excess returns are computed according
to equation (18). Panel c plots the kernel density of the ratio of the instantaneous expected excess returns
to their instantaneous volatility, eτ

t /
√

vτ
t , obtained by simulating 72000 observations from the model.
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Figure 9: Properties of realized excess bond returns

Panels a and b display the distribution of realized monthly excess returns on 5-year and 10-year bonds,
respectively. The realized excess returns implied by the 2 × 2 Wishart factor model (k = 3) are superposed
with the histograms of realized excess returns on the corresponding US zero bonds (1952:01–2005:06). In
both panels, the realized excess return is computed as the return on the long bond over the 3-month bond.
All returns are annualized by multiplying with a factor 1200.
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Figure 10: Campbell-Shiller regression coefficients

The figure plots—as a function of maturity—the parameters of Campbell and Shiller (1991) regression in
equation (26). Panel a displays the coefficients obtained from the US yields in the sample period 1952:01–
2005:06 and the theoretical coefficients implied by the 2× 2 Wishart factor model (k = 3). Panel b performs
the same exercise for the preferred affine models estimated by Duffee (2002), and compares them to the
empirical coefficients for the relevant sample period 1952:01–1994:12. The dashed lines plot the 80 percent
confidence bounds for the historical estimates based on the Newey-West covariance matrix. The 80 percent
bound is lax for the data, but rigid for the model: Clearly, a more conservative choice (e.g. 90 percent)
results in a still broader bound for the data, and thus is easier to match for the model. Further remarks
from Table I apply.
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Figure 11: Term structure of forward interest rate volatilities

Panel a presents the term structure of the instantaneous volatility of the (instantaneous) forward rate given
in equation (20), as implied by the 2 × 2 Wishart setting (k = 3). The instantaneous volatility is computed

as vf (t, τ) = 4Tr[dA(τ)
dτ Σt

dA(τ)
dτ Q′Q], where dA(τ)

dτ is given in closed form in equation (14). Panel b shows
the theoretical unconditional volatility of the one-year forward rate from the same WTSM, and compares it
with the preferred affine models of Duffee (2002): A0(3), A1(3) and A2(3). The x axis gives the maturity τ
of the forward rate, f τ−1→τ

t = ln(P τ−1
t /P τ

t ).
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Figure 12: Term structure of cap implied volatilities

The figure exhibits several term structures of cap implied volatilities in the 2 × 2 Wishart model (k = 3),
conditional on different values of the state matrix. The 3-month interest rate is the basis for each cap.

65



1 2 3 4 5

−40

−20

0

20

40

60
a. WTSM

1 2 3 4 5

−40

−20

0

20

40

60
b. SFB data

Maturity of forward rate

n = 2 n = 3 n = 4 n = 5

Figure 13: Cochrane-Piazzesi projection coefficients

The figure presents the slope coefficients in regressions of individual one-year excess bond returns on the set
of one-year forward rates f τ−1→τ , τ = 1, 2, 3, 4, 5, as a function of maturity τ . The legend n = 2, 3, 4, 5 refers
to the maturity of the bond whose excess return is forecast. Panel a displays coefficients in the simulated
3 × 3 Wishart economy (k = 3). The regressions are run on a sample of 72000 monthly observations from
the model. Panel b shows the loadings in the smooth Fama-Bliss (SBF) data set used by Dai, Singleton, and
Yang (2004). The sample is monthly and spans the period 1970:01–2000:12.
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